tensorflow变量


Variable就是一个创建变量的op
在这里插入图片描述
代码:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def variable_demo():
    """
    变量的演示
    :return:
    """
    # 创建变量
    a = tf.Variable(initial_value=50)
    b = tf.Variable(initial_value=40)
    c = tf.add(a, b)
    print("a:\n", a)
    print("b:\n", b)
    print("c:\n", c)

    # 初始化变量
    init = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        # 运行初始化
        sess.run(init)
        a_value, b_value, c_value = sess.run([a, b, c])
        print("a_value:\n", a_value)
        print("b_value:\n", b_value)
        print("c_value:\n", c_value)

    return None
variable_demo()

一定要进行初始化,然后再开启会话前先开启初始化在进行接下来操作

在这里插入图片描述
在没有命名时,变量都是variable
而用with+修改后
每个模块会比较清晰,相当于分成了几个空间,每个空间名称不同
代码:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def variable_demo():
    """
    变量的演示
    :return:
    """
    # 创建变量
    空间1
    with tf.variable_scope("my_scope"):
        a = tf.Variable(initial_value=50)
        b = tf.Variable(initial_value=40)
    空间2
    with tf.variable_scope("your_scope"):
        c = tf.add(a, b)
    print("a:\n", a)
    print("b:\n", b)
    print("c:\n", c)

    # 初始化变量
    init = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        # 运行初始化
        sess.run(init)
        a_value, b_value, c_value = sess.run([a, b, c])
        print("a_value:\n", a_value)
        print("b_value:\n", b_value)
        print("c_value:\n", c_value)

    return None
结果:
a_value:
 50
b_value:
 40
c_value:
 90
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值