相似矩阵串讲

本文聚焦于线性代数中相似矩阵的概念,解析其在非自然基下映射转换和矩阵幂计算中的作用。通过坐标转换解决非自然基问题,将矩阵表示为相似矩阵。同时探讨相似对角化如何简化矩阵幂运算,特别是当矩阵能被对角化时,计算变得更加高效。文章适合正在学习线性代数,尤其是对相似矩阵和二次型感兴趣的读者。
摘要由CSDN通过智能技术生成

《相似矩阵与二次型》是【马同学线性代数课程】里的最后一个单元。

从名字就可以看出,它其实有两部分内容

每一部分的信息密度都很大,这导致在学习过程中容易迷失主线。这篇文章就对“相似矩阵”部分进行一个主线的梳理。

1 两个问题

提出相似矩阵实际上是基于两个问题。

问题一:非自然基下的映射如何完成

问题二:矩阵的幂该如何计算

2 相似矩阵

对于问题一,我们是把它换到熟悉的自然基下去解决

利用坐标转换

非自然基下的映射就可以表示为

B=P^{-1}AP

A 与B 就是相似矩阵。

3 相似对角化

问题二稍显复杂,要进行拆解,首先对幂运算进行观察

3.1 相似矩阵的幂运算

对于问题二,利用相似矩阵的定义式,我们可以把A 的幂运算表示为:

A^n=\underbrace{P^{-1}BP\ P^{-1}BP \ P^{-1}BP \cdots P^{-1}BP}_n

而不断的利用结合律,可以消去P 与P^{-1}

A^n=P^{-1}B\cancel{\color{blue}{P\ P^{-1}}}B\cancel{\color{blue}{P \ P^{-1}}}B\cancel{\color{blue}{P}} \cdots \cancel{\color{blue}{P^{-1}}}BP

这样

A^n=P^{-1}B^nP

此时,如果B 是一个对角阵

B=\Lambda=\left(\begin{array}{cccc}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right)

那么

A^n=P^{-1}\Lambda^nP=P^{-1}\left(\begin{array}{cccc}\lambda_{1}^n & & & \\ & \lambda_{2}^n & & \\ & & \ddots & \\ & & & \lambda_{n}^n\end{array}\right)P

这就大大简化了计算

3.2 相似对角化

在学习了相似对角化后,我们知道。若A 能换到以其特征向量为基的空间下

\boldsymbol{x} 为特征向量

A 在这个基下的相似矩阵一定为对角阵\Lambda

此时

A^n=P^{-1}\Lambda^nP

\Lambda 就是A 的相似对角化矩阵


马同学马同学提供线性代数,微积分,概率论与数理统计,机器学习等知识讲解https://www.matongxue.com/madocs/2148/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值