如何用行列式求解椭圆的面积

如何用行列式求解椭圆的面积


同学们大家好,今天我们来学习如何用行列式计算椭圆的面积。

1 中学的思路

在中学的时候,我们是这样推导的。设椭圆的焦点在x 轴上,半长轴和半短轴为a,b ,则它的图像是这样的。

在里面画上一个单位圆

直观上,我们可以看出,它是单位圆在x 轴上增长a 倍,y 轴上增长b 倍形成的

如果,把单位圆看成是若干个矩形组成的。

 那么,在圆变成椭圆的过程中,就是把矩形的两条边增大了a 倍和b 倍。

 这样椭圆的面积就是单位圆的ab 倍,从而得出椭圆面积为\pi ab

 这个方法虽然很直观,但缺乏严谨性。比如肉眼可见的,左边部分的矩形并没填满圆,右边部分的矩形又超过了圆。

2 思想

下面,我们借用线代的工具来完成椭圆面积的推导,思路还是刚刚那个思路。将单位圆在x 轴上增长a 倍,y 轴上增长b 倍形成椭圆。

 只是把这段过程,用矩阵来描述

假如我们可以将圆与椭圆用向量来表示,并且求解出变换矩阵\boldsymbol{A} 。那么根据行列式的几何意义可以知道,变换后的面积,比上变换前的面积,就等于行列式。这样

 3 圆和椭圆的表示

思路有了,下面开始具体操作。首先写出圆的参数方程,因为单位圆的半径为1,所以其参数方程为

\begin{cases}x=\cos\theta\\y=\sin\theta\end{cases} (0\leq \theta\leq 2\pi)

据此,将它改写成一个二维向量

\begin{cases}x=\cos\theta\\y=\sin\theta\end{cases} \Longleftrightarrow \begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}

这个向量存在在二维平面中,当\theta 取具体值时,它就是平面上的一个点,当\theta 在0 到2\pi 范围内变化时,它就是圆

 同样的,根据椭圆的参数方程,可以写出其向量形式

\begin{cases}x=a\cos\theta\\y=b\sin\theta\end{cases} \Longleftrightarrow \begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}a\cos\theta\\b\sin\theta\end{pmatrix}

 圆和椭圆现在都已经写成向量形式了,下面就还剩下映射矩阵需要求解

4 求解矩阵

要求解这个矩阵,还是要回到单位圆变椭圆的思路上来

可以看到,这个变化过程分为两步,第一步是在横向上拉长a 倍,第二步就是在竖直方向上拉长b 倍

这样,很容易看出两次变换所用的矩阵

继而求出变换矩阵

\boldsymbol{A}=\begin{pmatrix}a&0\\0&1\end{pmatrix} \begin{pmatrix}1&0\\0&b\end{pmatrix}=\begin{pmatrix}a&0\\0&b\end{pmatrix}

将它作用在单位圆上,得到的结果和刚刚椭圆的表达式相同。

\begin{pmatrix}a&0\\0&b\end{pmatrix}\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}=\begin{pmatrix}a\cos\theta\\b\sin\theta\end{pmatrix}

这再次说明了变换矩阵就是\begin{pmatrix}a&0\\0&b\end{pmatrix}

5 结论

最后,根据行列式的几何意义可知

|\boldsymbol{A}|=\begin{vmatrix}a&0\\0&b\end{vmatrix}=ab ,单位圆面积=\pi 带入上式可得


百个故事,千幅图片,万名同学,欢迎加入:

首页-马同学图解数学-淘宝网淘宝, 店铺, 旺铺, 马同学图解数学https://matongxue.taobao.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值