如何通俗地理解施密特正交化

如何通俗地理解施密特正交化


如果\boldsymbol{x}_1,\boldsymbol{x_2},\cdots\boldsymbol{x_n} 是某向量空间,那么可通过下列做法找到该向量空间中的n 个两两正交的向量\boldsymbol{v}_1,\boldsymbol{v_2},\cdots\boldsymbol{v_n} : 

方法称为施密特正交化(Gram–Schmidt process)。

施密特正交化的几何意义是,比如已知\mathbb{R}^3 中的某向量空间(下图中的蓝色平面)的\boldsymbol{x}_1,\boldsymbol{x}_2 :

那么通过施密特正交化,可借助\boldsymbol{x}_1,\boldsymbol{x}_2 得到\boldsymbol{v}_1,\boldsymbol{v}_2 , \boldsymbol{v}_1,\boldsymbol{v}_2 就是该向量空间的一个正交基

 下面来解释下施密特正交化是如何推导出来的。

1 二维平面

先来讲解下如何寻找二维向量空间正交基

1.1 思路

先从特殊的二维向量空间\mathbb{R}^2 说起。比如知道\mathbb{R}^2 的一组,也就是下图中的两个向量

只要将其中一个向量对另外一个向量进行投影,就可以得到\mathbb{R}^2 的正交基

 1.2 代数

下面来进行代数推导,假设\boldsymbol{x_1},\boldsymbol{x_2} :

任选其一作为\boldsymbol{v_1} ,比如选\boldsymbol{x_1} :

 作出\boldsymbol{x_2} 在\boldsymbol{v_1} 所在直线的投影\overline{\boldsymbol{x_2}} ,连接\boldsymbol{x_2} 和\overline{\boldsymbol{x_2}} 就得到要求的垂线向量\boldsymbol{v_2} :

容易求出(详细证明):

\boldsymbol{v_2}=\boldsymbol{x_2}-\frac{\boldsymbol{x_2}\cdot\boldsymbol{v_1}}{\boldsymbol{v_1}\cdot\boldsymbol{v_1}}\boldsymbol{v_1}

这样就得到了\mathbb{R}^2 的一组正交基\boldsymbol{v}_1,\boldsymbol{v}_2 :

1.3 总结

上述方法就是二维空间中的施密特正交化,可以总结如下:

 上述推导过程并没有被限制在\mathbb{R}^2 中,所以它也可以完成开头提到的在三维空间中的平面上寻找正交基的任务:

 2 三维立体

再来看看如何寻找三维向量空间正交基

2.1 思路

还是以特殊的三维向量空间\mathbb{R}^3 为例。比如知道\mathbb{R}^3 的一组,也就是下图中的三个向量

先按照上一节介绍的方法,将其中任意两个向量正交化:

 然后向这两个正交向量的张成空间作垂线,从而得到三个正交向量,也就是\mathbb{R}^3 的一组正交基

 2.2 代数

下面来进行代数推导,假设\boldsymbol{x_1} 、\boldsymbol{x_2} 和\boldsymbol{x_3} :

任选两个向量,按照上一节介绍的方法将其中任意两个向量正交化,得到\boldsymbol{v_1} 和\boldsymbol{v_2} :

作出\boldsymbol{x_3} 在\boldsymbol{v_1},\boldsymbol{v_2} 张成平面上的投影\overline{\boldsymbol{x_3}} ,连接\boldsymbol{x_3} 和\overline{\boldsymbol{x_3}} 就得到要求的垂线向量\boldsymbol{v_3} :

容易求出(详细证明):

\boldsymbol{v_3}=\boldsymbol{x_3}-\frac{\boldsymbol{x_3}\cdot\boldsymbol{v_1}}{\boldsymbol{v_1}\cdot\boldsymbol{v_1}}\boldsymbol{v_1}-\frac{\boldsymbol{x_3}\cdot\boldsymbol{v_2}}{\boldsymbol{v_2}\cdot\boldsymbol{v_2}}\boldsymbol{v_2}

这样就得到了\mathbb{R}^3 的一组正交基\boldsymbol{v}_1,\boldsymbol{v_2},\boldsymbol{v_3} :

2.3 总结

上述方法就是三维空间中的施密特正交化,可以总结如下:

 3 更高维度

更高维度的情况以此类推,这里不再赘述。


百个图书,千幅图片,万名同学,欢迎加入:

首页-马同学图解数学-淘宝网淘宝, 店铺, 旺铺, 马同学图解数学https://matongxue.taobao.com/

  • 36
    点赞
  • 83
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值