如何通俗地理解合同矩阵

如何通俗地解释合同矩阵


同一个二次曲线,在不同基下需要用不同的二次型矩阵表示。这两个二次型矩阵就称为合同矩阵。

 1 解释

1.1 直角坐标系

假设我们有这样一个椭圆,它在直角坐标系x_1,x_2 下的对应方程为

ax_1^2+bx_1x_2+cx_2^2=1

1.2 自然基

下面,我们这个方程用二次型表示为

[\boldsymbol{x}]_\mathcal{E}^T \boldsymbol{A}[\boldsymbol{x}]_\mathcal{E}=1

其中[\boldsymbol{x}]_\mathcal{E} 就是椭圆上的点在自然基下的坐标

1.3 非自然基

既然椭圆可以表示在自然基下,当然也可以表示在非自然基下

假设椭圆在某非自然基的对应方程为

[\boldsymbol{x}]_\mathcal{P}^T \boldsymbol{B}[\boldsymbol{x}]_\mathcal{P}=1

[\boldsymbol{x}]_\mathcal{P} 就是椭圆上的点在非自然基下的坐标

1.4 合同矩阵

可以看到,\boldsymbol{A},\boldsymbol{B} 是同一个椭圆在不同基下对应的二次型,它们就被称为合同矩阵。

而我们知道,若\boldsymbol{A},\boldsymbol{B} 满足

\boldsymbol{B}=\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}

它们才能称为合同阵,那这又是怎么得来的呢?下面我们就来推导一下

2 验证

假设由自然基到非自然基的过渡矩阵为\boldsymbol{P}

首先,根据坐标变换公式有

[\boldsymbol{x}]_\mathcal{E}=\boldsymbol{P}[\boldsymbol{x}]_\mathcal{P}

然后,将这个式子与左边的椭圆方程联立

最后,令

\boldsymbol{B}=\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}

这样,我们就得到了上面那幅图中,曲线在非自然基下的表达式

[\boldsymbol{x}]_\mathcal{P}^T\boldsymbol{B}[\boldsymbol{x}]_\mathcal{P}=1

3 例题

例:已知某曲线c ,在直角坐标系下的方程为\frac{5}{8}x_1^2-\frac{3}{4}x_1x_2+\frac{5}{8}x_2^2=1 ,现将坐标系逆时针旋转\frac{\pi}{4} ,形成新的坐标系y_1,y_2 。

求此曲线在y_1,y_2 坐标系下的表达式

3.1 分析

本题,我们可以利用合同矩阵的知识来做

(1)首先,将曲线用向量形式,表示在自然基下

(2)然后,利用过渡矩阵,对向量空间进行换基

(3)最后,再将新的基下的曲线写回一般方程的形式

这样,我们可以就利用黄色路径来完成题目

3.2 求解

解:(1)令自然基下的坐标向量为[\boldsymbol{x}]_\mathcal{E}=\begin{pmatrix}x_1\\x_2\end{pmatrix} ,则\frac{5}{8}x_1^2-\frac{3}{4}x_1x_2+\frac{5}{8}x_2^2=1 在自然基下可以表示为

\begin{pmatrix}x_1&x_2\end{pmatrix}\begin{pmatrix}\frac{5}{8}&-\frac{3}{8}\\-\frac{3}{8}&\frac{5}{8}\end{pmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix}=1

(2)令非自然基的坐标向量为[\boldsymbol{x}]_\mathcal{P}=\begin{pmatrix}y_1\\y_2\end{pmatrix} ,则

\begin{pmatrix}x_1\\x_2\end{pmatrix}=\boldsymbol{P}\begin{pmatrix}y_1\\y_2\end{pmatrix}

其中\boldsymbol{P} 为旋转矩阵

\boldsymbol{P}=\begin{pmatrix}\cos \frac{\pi}{4}&-\sin \frac{\pi}{4}\\\sin \frac{\pi}{4}&\cos \frac{\pi}{4}\end{pmatrix}=\begin{pmatrix}\frac{\sqrt{2}}{2}&-\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}&\frac{\sqrt{2}}{2}\end{pmatrix}

那么曲线c 在非自然基下的表达式为

[\boldsymbol{x}]_\mathcal{P}^T\boldsymbol{P}^T\boldsymbol{A}\boldsymbol{P}[\boldsymbol{x}]_\mathcal{P}=1

带入数据,整理后可得

\begin{pmatrix}y_1&y_2\end{pmatrix}\begin{pmatrix}\frac{1}{4}&0\\0&1\end{pmatrix}\begin{pmatrix}y_1\\y_2\end{pmatrix}=1

这里的\begin{pmatrix}\frac{1}{4}&0\\0&1\end{pmatrix} 就是\begin{pmatrix}\frac{5}{8}&-\frac{3}{8}\\-\frac{3}{8}&\frac{5}{8}\end{pmatrix} 的合同矩阵

(3)最后将非自然基下这个矩阵方程写回y_1,y_2 坐标系,得到曲线c 在y_1,y_2 下的表达式为

\frac{1}{4}y_1^2+y_2^2=1


合同矩阵,又称为相似矩阵,指的是存在一个可逆矩阵P使得满足条件P^-1AP=B的两个方阵A和B。这里A和B被认为是合同的,P称为它们的合同变换矩阵。这意味着A和B具有相同的特征值,并且可以通过一个相似变换相互转换。 举例来说,假设我们有两个2x2的矩阵: A = \(\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}\) 和 B = \(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}\) 我们想要找到一个可逆矩阵P,使得P^-1AP = B。首先,我们需要对矩阵A进行特征值分解,找到A的特征值和对应的特征向量。A的特征多项式是: det(A - λI) = det(\(\begin{bmatrix} 1-λ & 2 \\ 2 & 5-λ \end{bmatrix}\)) = (1-λ)(5-λ) - 4 = λ^2 - 6λ + 1 = 0 解这个二次方程得到A的特征值λ1 = 1和λ2 = 5。 对于每个特征值,我们求解(A - λI)x = 0来找到对应的特征向量。对于λ1 = 1,解得特征向量v1 = \(\begin{bmatrix} -2 \\ 1 \end{bmatrix}\);对于λ2 = 5,解得特征向量v2 = \(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\)。 我们可以使用这两个特征向量来构造合同变换矩阵P: P = \(\begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}\) 注意这里的特征向量不是唯一的,任何非零倍数的特征向量都可以,但需要保证它们构成P的列向量是线性独立的。我们现在检查P是否可逆,由于它的列向量线性无关,P是可逆的。 接下来,我们计算P^-1AP是否等于B: P^-1 = \(\frac{1}{(-2)\cdot2 - 1\cdot1} \begin{bmatrix} 2 & -1 \\ -1 & -2 \end{bmatrix}\) = \(\begin{bmatrix} -2/5 & 1/5 \\ 1/5 & 2/5 \end{bmatrix}\) 计算P^-1AP: P^-1AP = \(\begin{bmatrix} -2/5 & 1/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}\) 通过矩阵乘法计算,最终我们可以得到: P^-1AP = \(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}\) = B 这个结果证明了矩阵A和B是合同的,并且P是它们的合同变换矩阵
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值