千万不要忘记与老板沟通

 
——另眼看职场(五)
  六七十年代的中国,最为流行的一句话就是“千万不要忘记阶级斗争”,这句带有时代烙印的话现在读来,大多数年轻人都会有些不知所云。但听来都会明白,在汉语表述中“千万”二字当然显示极端重要的意思。
 
  在职场之上,对大多数年轻人而言,老板或者领导属于远高于自己的“阶层”,高高在上、遥不可及,越是大公司越是如此。我自己早年就职的单位,最高领导是部级,刚去的时候,单是老板专用的电梯就让我们深深体会其高大和威严。工作6年之后,职位的变化使我能够有机会接触坐专用电梯的领导。接触多了,遥不可及的感觉淡了很多。这样的感觉背后,我更多地体会了与领导沟通对自己发展的重要性。 借用七十年代的用语,千万不要忘记和领导沟通,是职场做好下属的至理名言。
 
  我身边的很多人,由于对老板的生疏和恐惧感,潜意识中间怕见老板,见老板时一举一动都不自然。即便是必要的工作汇报,多愿意用书面报告,以免老板当面责问的难堪。时间久了,员工和老板的陌生或者隔膜肯定会越来越深。其实,老板也是人,人与人之间的了解、理解以致好感是要通过实际接触和语言沟通才能建立起来的。一个员工,只有主动和老板多做面对面的沟通,把自己的特点尤其是优点真实地展现在老板面前,才能使老板直接认识到自己的为人和才能,才会铺垫好被赏识和发掘的可能性。
 
  后来,在我做了领导以后,这些感触就更为清晰了。在我看来,肯主动和领导沟通的员工,往往给我留下自信、上进的第一印象,在多次交流后总能看到他们身上的闪光点,时间长了,这些人会进入我的视野,留下比较深刻的心理位置,我也很愿意给这样的员工压担子,他们得到的机会比其他人多了不少,于是才美外现有目共睹。
 
  在我看来,在与老板的沟通方面,做好以下几点非常重要:
 
  沟通一定讲求简洁:老板们大多公务繁忙,也非常讲求效率,最怕长篇大论、言不达意。莎士比亚说简洁是“智慧的灵魂”,简洁的表达本身就是汇报者总结、语言能力的体现,提前做好准备打好腹稿,用简洁的语言和行动和老板进行短暂交流,往往可以起到事半功倍的作用。
 
  “不亢不卑”是根本:对老板的尊重是必要的,但是过于谦恭往往会让自己的观点失去锐气,更会老板心里产生反感。与老板沟通,言谈举止之间不亢不卑,从容对答,会给老板留下自信、中肯、大度的好印象,成为他心目中的可造之才。
 
  善于聆听做好听众:和老板的沟通一定是双向互动的,人们交流了解对方的观点想法非常重要,尤其是吃透老板对相关问题的思路,对于员工的回报和以后的深化非常必要。不要急于发表个人意见,要有足够的耐心去聆听和领悟。自顾自地滔滔不绝,会让人感觉有些妄自尊大,是无法起到与老板沟通作用的。
 
  勿贬低别人抬高自己:和老板沟通往往会涉及他人,老板也愿意听到对他人的评价,以增加了解。这样的时候,作为下属所说的话,一定要紧密围绕“事”而不是“人”,即“就事不就人”。要在分析“事”方面的具体不足,带出对“人”的看法,不下定语,留给老板自己判断的空间。这样的沟通,会留下为人厚道、处事公正的好印象,老板不会不满意。
 
  作为员工要了解老板的沟通倾向,争取和老板相吻合,要适时调整自己的沟通风格,主动有效地进行沟通,创造与老板之间和谐和默契的工作氛围和上下级关系,可以最大程度地获得老板的认可。(马越)
 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值