有三个门,两个羊一个车。嘉宾选择一个门后,主持人打开另外两个门中的一个,门里是羊。嘉宾改选或者不改选。门后有车就中大奖。否则什么都没有。
记得当年做这个题目的时候就与小李子和疯子争论的不休。
当时时至今日仍然不能完全确定这是个概率问题。
其实这个不完全是概率问题
因为概率中只是考虑了出现结果的可能性。但是这个问题却考虑出现结果的好坏。
换而言之,就是在这个事件中。它是一个不可重复的事情。你甚至可以考虑到主持人的心理在做决策。
所以它不是一般意义上的概率问题。
因为主持人的心理对这个事件有着非常重大的影响。如果主持人随机选择一个门并打开,并且里面是羊。那么你改选或者不改选你的概率都是1/2。如果主持人要指定打开一个羊的门,那么你改选选中车的概率就是2/3.如果这个老兄和主持人是熟人,其实可以通过这点信息交互就能断定哪个是车的门。
有一个同样的例子:三个囚徒,其中两个是要被释放的。囚徒A与看守很熟,但是不能直接打听自己是否会被释放。另外两个中肯定有一个会被释放。那么是否打听过那两个中的一个释放名字。会影响自己的释放的概率呢?
当然不会,这点谁都能理解。但是囚徒A竟然改变了另两个囚徒选中概率。其实..我觉得也是不可能。一个不被释放概率变为0,另外一个变为2/3.这样囚徒A会不会因为得到这条消息“另外两个中的一个人被释放了”,而非常开心呢?(傻瓜才会开心!)
那么说来,如果我们有很多奖项等待颁发(抽奖的形式)。那么你应该听到别人的名字而感到开心。因为你不久就会中奖了。但是如果刚才的情况是两个囚徒同时知道另外一个人可以被释放。那么难道两个囚徒不被释放的概率都是2/3吗,难道不应该是1/2?按照刚才那个选车选羊的问题给出的结论。那的确都是2/3.所以我一直不认为这个是个概率的问题。因为这是个博弈问题。
如果主持人是相当狡猾的。他的任何选择都没有给带来任何信息。那么你的选择其实刚刚从打开羊门的一霎那才开始。
但是不管怎么说,你改变你过去的选择在概率上对你来说是百利而无一害。因为不管怎样你选择另外一个门的概率比你坚守一个门的概率要么相等,要么高出一倍。
所以最优策略就是改选。