巴什博弈是个很经典的游戏。
就是只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
那么我们可以找到一个规律,来制定必胜策略。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
对于巴什博弈,那么我们规定,如果最后取光者输,那么又会如何呢?
(n-1)%(m+1)==0则后手胜利
先手会重新决定策略,所以不是简单的相反行的
例如n=15,m=3
后手 先手 剩余
如果n>m,并且n-m<=m,那么就是谁后取谁就赢。
如果n>m,并且n要比m大很多。
那么就有一个公式n=(m+1)*r+s;
根据这个式子只要先手先取走s,以后先手每次取的个数与后手取的个数相加等于m+1,那么先手必赢。
但如果s为0,那么先手无论取多少个(1 -- m之间),后手都会胜利(后手懂得巴什博弈的情况下)。
HDU2188就是一个经典的巴什博弈
网址:http://acm.hdu.edu.cn/showproblem.php?pid=2188
AC代码:
<span style="font-size:18px;">#include<stdio.h>
int main()
{
int T,n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
if(n<=m) printf("Grass\n");
else if(n/m<=2) printf("Rabbit\n");
else if(n%(m+1)==0) printf("Rabbit\n");
else if(n%(m+1)!=0) printf("Grass\n");
}
return 0;
}</span>
欢迎补充与纠错