关于那些奇怪的格式和矫枉过正

【未完待续】

以下代码来自刘事鑫,改得就有些过头。

#include<bits/stdc++.h>//头文件 
using namespace std;//头文件 
int n, a[21474836], ans, v, l = 1, k; //定义变量,数组 
int main(){//主函数 
    cin >> n >> k;//输入 
    for(int i = 1; i <= n; i++){//for循环 
        cin >> a[i];//输入数组 
    }//大括号
    //换行 
    for(int r = 1; r <= n; r++){ //l是总和的开头 ,r是总和的结尾 
        v += a[r];//加总和 
        while(v > k){ //如果总和大于预定的总和(K)
            v -= a[l];//那么就减去总和尾部的数 
            l++;//由于减去了总和尾部的数,所以要将尾部加1 
        }//大括号
        if(v == k) ans++;//如果数组总和与预定的总和相等,那么答案加1 
    }//大括号 
    //换行 
    cout << ans;//输出 
    return 0;//返回0指令 
}//大括号
### 如何纠正图像的枕型畸变桶形畸变 #### 使用MATLAB进行桶形畸变校正 在处理桶形畸变时,可以采用多项式模型来描述径向畸变。通过估计畸变参数并应用逆变换,能够有效地矫正畸变。然而,在实际操作过程中可能会遇到边缘区域矫枉过正的情况[^1]。 ```matlab % MATLAB代码示例:基于多项式的桶形畸变校正 function undistortedImage = correct BarrelDistortion(image, k1, k2) % 获取图像尺寸 [height, width] = size(image); % 创建网格坐标 [X, Y] = meshgrid(1:width, 1:height); centerX = width / 2; centerY = height / 2; % 计算距离平方 rSquared = (X - centerX).^2 + (Y - centerY).^2; % 应用径向畸变系数 distortionFactor = 1 + k1 * rSquared + k2 * rSquared.^2; % 反向映射像素位置 newX = X - (X - centerX) .* (distortionFactor - 1); newY = Y - (Y - centerY) .* (distortionFactor - 1); % 插值得到未失真图像 undistortedImage = interp2(X, Y, double(image), newX, newY, 'cubic'); end ``` #### 处理枕形畸变的方法 对于枕形畸变而言,其原理与桶形畸变相似,只是方向相反。同样可以通过调整多项式的符号实现矫正。具体来说,负值的k1,k2项可用于补偿枕形畸变带来的影响[^2]。 ```python import cv2 import numpy as np def correct_pincushion_distortion(img_path, output_path): img = cv2.imread(img_path) h, w = img.shape[:2] # 定义相机矩阵K以及畸变系数D K = np.array([[focal_length, 0, center_x], [0, focal_length, center_y], [0, 0, 1]], dtype=np.float32) D = np.array([[-0.05], [-0.08]]) # 调整这些数值直到获得满意的结果 mapx,mapy=cv2.initUndistortRectifyMap(K,D,(w,h),(h,w)) dst=cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR) cv2.imwrite(output_path,dst) ``` #### OpenCV库的应用 OpenCV提供了便捷的功能用于处理各种类型的镜头畸变。`cv::undistort()`函数可以直接接收相机内参矩阵(Camera Matrix)、畸变系数(Distortion Coefficients),并通过内置算法完成自动化的畸变校正过程[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值