# 数据变换
数据变换的目的是因为原始数据较为杂乱,如果想要将原始数据输入到神经网络或RNN等网络中进行运算,那么势必要对原始数据做一定的数据。
最主要的目的是为了统一数据的格式
mindspore中使用Transforms进行数据的预处理,Transforms允许通过map方法传入,实现对指定数据列的处理。
Transforms对图像,文本,声音等都支持,都是进行离散化之后进行预测的。
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset
我们这里对其进行引进,以手写数据集作为示例进行演示。
数据集的下载过程就不进行展示了。
引入数据集之后,要对原始数据进行转换。
第一步,拆分数据集的标签和原始数据。
image, label = next(train_dataset.create_tuple_iterator())
第二步,对其进行变换,主要是进行归一化和根据均值和方差对其进行标准化,再对其进行整理。
composed = transforms.Compose(
[
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
)
以上是对于图像的处理方法。
Transforms对于文本也有其独特的处理方法。
def my_tokenizer(content):
return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))
以上是对于一个句子进行分词的操作。