难度中等1011收藏分享切换为英文接收动态反馈
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用
1
和0
来表示。示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] 输出:2 解释:3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有2
条不同的路径: 1. 向右 -> 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 -> 向右示例 2:
输入:obstacleGrid = [[0,1],[0,0]] 输出:1提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j]
为0
或1
回溯算法
package com.company;
class Solution {
public int uniquePaths(int m, int n) {
int[][] grid = {{0,0,0},{0,1,0},{0,0,0}};
boolean[][] visited = new boolean[m][n];
backtrack(grid, visited, 0, 0, m - 1, n - 1);
return count;
}
public static int count = 0; // 用于记录不同路径数量
private void backtrack(int[][] grid, boolean[][] visited, int row, int col, int m, int n) {
if (row == m && col == n) { // 当前位置为目标位置
count++; // 找到一条新的路径,路径数量加1
return;
}
if (row > m || col > n || visited[row][col]||grid[row][col]==1) { // 越界或当前位置已经被访问过,不能继续走
return;
}
visited[row][col] = true; // 标记当前位置已经被访问
backtrack(grid, visited, row, col + 1, m, n); // 向右走一步
backtrack(grid, visited, row + 1, col, m, n); // 向下走一步
visited[row][col] = false; // 撤销当前选择,回溯到上一步
}
public static void main(String[] args) {
Solution solution = new Solution();
int m = 3;
int n = 3;
int paths = solution.uniquePaths(m, n);
System.out.println("The number of unique paths from top-left to bottom-right is: " + paths);
}
}
动态规划
class Solution {
public static void main(String[] args) {
// 测试用例
int[][] obstacleGrid = {{0,0,0},{0,1,0},{0,0,0}};
int result = uniquePathsWithObstacles(obstacleGrid);
System.out.println(result);
}
public static int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
// 如果在起点或终点出现了障碍,直接返回0
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
return 0;
}
// 初始化第一列,当遇到障碍时,后面的都无法到达,因此直接退出循环
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
// 初始化第一行,当遇到障碍时,后面的都无法到达,因此直接退出循环
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
// 从第二行第二列开始计算,如果当前格子有障碍,则不能到达,路径数为0,否则等于上方和左方的路径数之和
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;//这行会给它不可达的赋值为0
}
}
// 返回到达终点的路径数
return dp[m - 1][n - 1];
}
}