北理工 MOOC - 模式识别系统基本概念

本文是北理工MOOC模式识别课程的学习笔记,涵盖了样本与特征、向量空间、有监督与无监督学习、紧致性、泛化能力等核心概念,以及模式识别系统的六个步骤。探讨了如何从数据中抽取出有效特征,构建分类器,并避免过拟合,以提升泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在 MOOC 上学习北理工的模式识别课程,这里记录下学习笔记。

1、样本、特征与特征空间

  • 样本:一个个具体要识别的事物称为样本。
  • 特征:从样本中抽取能够识别这个样本的关键特性,称为样本的一个特征,例如 4 个轮子是汽车的一个重要特征。
  • 特征空间:当我们找到一组特征来表达一个样本后,就完成了样本到特征表达之间的数学转换,所有样本转换完后构成的特征表达就是特征空间。

在特征空间中,每个样本都可以看做是由一组特征来表达的一个点,通过抽取样本的特征,并转换成数学表达,就将原事物(样本)的识别问题转换为:对该样本在特征空间中对应点的进行分类。

2、向量空间、集合空间

  • 向量空间:如果样本的一个特征可以抽象成向量的一个维度,那么一个样本的多个特征就可以抽象成向量空间的一个向量,即特征向量。
  • 集合空间:如果样本的特征不能用向量空间来表达,则可以构成集合空间。

3、有监督、无监督学习

模式识别技术的核心其实是一个分类器,要实现一个好的分类器,关键是确定一个好的分类决策规则,即设计一个好的分类器模型或模式识别算法,以及确定要抽取的用于分类的样本特征。

我们经常听到的训练,学习的意思是:在已经确定分类器模型和样本特征的前提下,通过算法来处理大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值