数据治理进阶:精读62页数据治理体系建设文档【附全文阅读】

        该文档聚焦中国移动企业级省大数据平台数据治理,为平台建设与管理提供全面规范,适用于平台建设者、数据治理人员、业务部门相关人员等。
        总体说明:旨在构建完整数据治理体系,提升数据管控与业务支撑能力。目标涵盖组织架构管理、多模块管理等,遵循有效性、价值化等原则。
        数据治理体系:总体框架含组织架构、治理模块、数据运维。组织架构由多部门构成,明确各角色职责;系统架构涵盖功能框架与模块流程,各模块协同运作,与外部系统紧密关联。
        数据治理核心模块:各模块分工明确。数据标准管理统一规范数据;元数据管理提供多方面支持;数据质量管理保障数据质量;数据资产管理实现资产全生命周期管理;数据安全管理构建安全防护体系。
        数据治理场景:以银行伪卡交易判别和手机贷业务为例,展示移动与银行合作利用数据治理成果的流程,通过数据采集、处理、评估等环节,为业务提供有力支持。
        方案优势:该方案系统性强,各模块协同构建完整体系,提升数据质量与管理效率;注重实际应用,场景案例体现数据治理对业务的支撑价值;安全性高,保障数据安全与用户隐私,为企业数字化发展筑牢数据根基,提升企业竞争力。

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧化智能化数字化方案

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值