Python数值计算(11)

本篇介绍一下多项式插值中,拉格朗日法的原理及其实现。

1. 一点数学知识

先引用数学背景。如果给定N个点,然后要求一个多项式通过这N个点,最简单直接的方式是列出线性方程求解,N个点可以确定N个未知量,则所求的拟合多项式,其最高次幂就是(N-1)。

在很多教材上,关于该插值多项式的算法如下:

这个公式具有很强烈的轮换性,和线性方程组的克莱姆法则很相似(其实本质上就是一样的),所以实现起来也是非常简单。

2. 算法实现

def lagrangeIntp(x:ndarray,y:ndarray):
    '''
    返回基于x,y点对的拉格朗日插值多项式
    x,y必须有相同的长度
    '''
    n=len(x)
    ret=P([0])
    for k in range(n):
        roots=list(x)   
        s=roots[k]
        del roots[k]
        p=P.fromroots(roots)
        p=p*y[k]/p(s)
        ret+=p
    return ret

当然,上述函数并未对输入进行检测,例如x,y的尺寸应该是一致的等。

然后测试一下该拟合函数,仍旧以之前的函数f(x)=1-2x+3x^3为例:

a=P([1,-2,0,3])
print(a) # 1.0 - 2.0·x + 0.0·x² + 3.0·x³
x=np.arange(-2,2)
print(type(x))
y0=a(x)
b=lagrangeIntp(x,y0)
print(b) # 1.0 - 2.0·x + 0.0·x² + 3.0·x³
c=P.fit(x,y0,deg=3,domain=[-1,1])
print(c) # 1.0 - 2.0·x - (3.87289473e-15)·x² + 3.0·x³
X=np.linspace(-2,1,100)
plt.plot(X,a(X),'r')
plt.plot(X,b(X),'g--')
plt.plot(X,c(X),'b--')
plt.grid()
plt.show()

上面的例子中,先用原多项式a生成了四个点(-2,-19),(-1,0),(0,1),(1,2),然后将其作为拟合的输入,计算得到多项式b,并加入了通过fit拟合出来的多项式c,最后绘制三者的图形,如下:

可以看到三个图形是几乎完全重叠的,特别是使用拉格朗日法的插值多项式b,与原多项式a完全相同。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值