Python数值计算(21)——非扭结点三次样条曲线

前面介绍到紧固和自然三次样条曲线,这次介绍一下非扭结点三次样条曲线。所谓的非扭结点,是指由于最开始的两个子区间使用插值多项式相同,最后两个子区间所使用的插值多项式也相同,这就会导致x_1,x_{n-1}在这段多项式上起不到扭结点的效果,故而得名not-a-knot。

本篇除了介绍非扭结点的三次样条曲线外,还将三种不同边界条件的三次样条进行了对比分析。

1. 数学知识

这个在前面已经做过介绍,这里再次重复说明一遍,它对我们算法实现具有很大的帮助:

同样的,a_j就是各分段起点的函数值,通过上述方程组求解出每一个c_j以后,可以把d_j,b_j计算出来。

2. 算法实现

和前面紧固,自然三次样条曲线一样,我们用一个类来实现插值算法,以及其他的方法、属性,这样就可以在后续实现方便的多值估算和绘图,事实上,核心的构造函数,只需要在原来熙然样条曲线中做少量修改即可,最终实现代码如下: 

import numpy as np
import matplotlib.pyplot as plt
from numpy.polynomial import Polynomial
from numpy import linalg
from scipy.interpolate import CubicSpline
np.polynomial.set_default_printstyle("unicode")

class kcsIntp:
    __coef=None
    __bpx=None
    __bpy=None
    def __init__(self,x:np.ndarray,y:np.ndarray):
        '''
        非扭结点三次样条曲线
        '''
        n,=x.shape
        h=np.diff(x)
        a=y.copy()
        dy=np.diff(y)
        A=np.zeros((n,n))         
        A[0,0:3]=[-h[1],h[0]+h[1],-h[0]]
        A[-1,-3:]=[-h[n-2],h[n-3]+h[n-2],-h[n-3]]
        B=np.zeros(n)
        for i in range(1,n-1):
            A[i,i-1:i+2]=[h[i-1],2*(h[i-1]+h[i]),h[i]]
            B[i]=3*dy[i]/h[i]-3*dy[i-1]/h[i-1]
        c=linalg.solve(A,B)
        d=np.zeros(n)
        b=np.zeros(n)
        for j in range(n-1):
            d[j]=(c[j+1]-c[j])/3/h[j]
            b[j]=dy[j]/h[j]-h[j]/3*(2*c[j]+c[j+1])
        self.__coef=np.array([a,b,c,d])[:,:-1].T
        self.__bpx=x.copy()
        self.__bpy=y.copy()

    def __call__(self,w):
        n,=w.shape
        ret= np.zeros(n)
        for i in range(n):
            if self.__bpx[0]>=w[i]:
                ret[i]=self.__bpy[0]
                continue
            if self.__bpx[-1]<=w[i]:
                ret[i]=self.__bpy[-1]
                continue
            j=0
            while self.__bpx[j]<w[i]:
                j+=1
            cp=self.__coef[j-1,:]
            p=Polynomial([0])
            for t in range(len(cp)):
                p+=cp[t]*Polynomial([-self.__bpx[j-1],1])**t
            ret[i]=p(w[i])
        return ret
    
    @property
    def c(self):
        '''
        如果提供的是n+1个点对,则系数是shape为(n,4)的ndarray
        每一行就是一个分段区间的参数,依次记作a,b,c,d
        则该区间的样条曲线就是y=a+b*(x-xj)+c*(x-xj)**2+d*(x-xj)**3
        其中0<=j<=n-1    
        '''
        return self.__coef
    @property
    def x(self):
        return self.__bpx

3. 算法测试

采用非扭结点三次样条插值,在[0,4]上,对函数f(x)=e^x进行拟合,假设我们知道x=0,1,2,3,4点处的函数值,以及在x=0x=4时的导数值,绘制原函数曲线,以及拟合后的曲线,代码如下:

x=np.array([0,1,2,3,4])
y=np.exp(x)
 
X=np.linspace(0,4,100)
Y=np.exp(X)
plt.plot(X,Y,'r')
 
S=kcsIntp(x,y)
Y1=S(X)
plt.plot(X,Y1,'b-.')
 
plt.grid()
plt.show()

运行效果如下:

可以看到,贴合程序较自然三次样条曲线还是要高一些,这种方式也通常是在不知道端点处的导数信息情况下,推荐的拟合方式。

4. 现有工具包

在scipy的工具包中,scipy.interpolate.CubicSpline类可以完成三次样条曲线的插值功能,构造函数原型如下:

class CubicSpline(x, y, axis=0, bc_type='not-a-knot', extrapolate=None)

其中x,y是拟合点,主要的区别是bc_type,该参数决定了边界条件,使用'not-a-knot'值时,就是非扭结点三次样条曲线,这个参数也是默认的,所实现的拟合效果与第3节中相同,可以通过系数对比确认这一点:

print(sp.c)
'''
[[ 0.48231853  0.48231853  2.66162144  2.66162144]
 [ 0.02929062  1.47624622  2.92320182 10.90806614]
 [ 1.20667268  2.71220952  7.11165756 20.94292553]
 [ 1.          2.71828183  7.3890561  20.08553692]]
'''
print(S.c)
'''
[[ 1.          1.20667268  0.02929062  0.48231853]
 [ 2.71828183  2.71220952  1.47624622  0.48231853]
 [ 7.3890561   7.11165756  2.92320182  2.66162144]
 [20.08553692 20.94292553 10.90806614  2.66162144]]
'''

同样的,系数的组织方式不同,具体细节见前两个章节。

5. 不同类型三次样条曲线的对比

前面根据三种不同边界条件,以下将三种边界条件所构造的分段多项式,对比其1阶,二阶和三阶导数。实现代码如下:

import numpy as np
import matplotlib.pyplot as plt
from numpy.polynomial import Polynomial
from numpy import linalg
from scipy.interpolate import CubicSpline

x=np.array([0,1,2,3,4])
y=np.exp(x)

spc=CubicSpline(x,y,bc_type=((1, 1), (1, np.exp(4))))
spn=CubicSpline(x,y,bc_type='natural')
spk=CubicSpline(x,y)

fig,ax=plt.subplots(2,2)
X=np.linspace(0,4,100)
Yc0=spc(X)
Yn0=spn(X)
Yk0=spk(X)
# 拟合函数
ax[0,0].plot(X,Yc0,'r')
ax[0,0].plot(X,Yn0,'g')
ax[0,0].plot(X,Yk0,'b')
ax[0,0].set_title('order-0')
ax[0,0].grid()

# 拟合函数一阶导
Yc1=spc.derivative(1)(X)
Yn1=spn.derivative(1)(X)
Yk1=spk.derivative(1)(X)
ax[0,1].plot(X,Yc1,'r')
ax[0,1].plot(X,Yn1,'g')
ax[0,1].plot(X,Yk1,'b')
ax[0,1].set_title('order-1')
ax[0,1].grid()

# 拟合函数二阶导
Yc2=spc.derivative(2)(X)
Yn2=spn.derivative(2)(X)
Yk2=spk.derivative(2)(X)
ax[1,0].plot(X,Yc2,'r')
ax[1,0].plot(X,Yn2,'g')
ax[1,0].plot(X,Yk2,'b')
ax[1,0].set_title('order-2')
ax[1,0].grid()

# 拟合函数三阶导
Yc3=spc.derivative(3)(X)
Yn3=spn.derivative(3)(X)
Yk3=spk.derivative(3)(X)
ax[1,1].plot(X,Yc3,'r')
ax[1,1].plot(X,Yn3,'g')
ax[1,1].plot(X,Yk3,'b')
ax[1,1].set_title('order-3')
ax[1,1].grid()
plt.show()

对比图如下:

上图中,红色、绿色和蓝色分别表示的是紧固、自然和非扭结点三次样条曲线,order为0~3分别表示0阶,1阶,2阶和3阶导数。可以看到:

1. 拟合曲线在一阶导数上仍旧是光滑的,在二阶导数上是连续的,但是在三阶导数上就存在跳跃了,不过,在每个子区间内,其导函数值保持恒定,这些都是三次样条曲线应该具有的基本特征。

2. 对于非扭结点三次样条曲线,可以看到在右下图中,前两个子区间的三阶导数值是相同的,而另外两种三次样条曲线则不具备这一特性。

3. 由于紧固三次样条曲线使用了更多的原函数信息,因此,其1阶,2阶的趋势基本上和原函数f(x)=e^x保持一致,而自然三次样条曲线在二阶导数中的表现是最差的,在三阶导数中也产生了较大的振动。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值