集成学习Bagging和Boosting算法总结

一、集成学习综述

  • 1.集成方法或元算法是对其他算法进行组合的一种方式,下面的博客中主要关注的是AdaBoost元算法。将不同的分类器组合起来,而这种组合结果被称为集成方法/元算法。使用集成算法时会有很多的形式,如:
    • 不同算法的集成
    • 同一种算法在不同设置下的集成
    • 数据集不同部分分配给不同分类器之后的集成
  • 2.AdaBoost算法优缺点
    • 优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整
    • 缺点:对离群点敏感
    • 适用数据类型:数值型和标称型数据

二、基于数据集多重采样的分类器

  • 1.bagging方法(bootstrap aggregating)
    • 主要思想:
      • (1). 从原始数据集中抽取新的训练集。每次从原始数据集中使用有放回采样数据的方法,抽取n个样本(在原始数据集中,有些样本可能被重复采样,而有些样本可能一次都未被采样到)。共进行k次抽取,得到k个新的数据集(k个新训练集之间是相互独立的),新的数据集的大小和原始数据集的大小相等。
      • (2). 每次使用一个新的训练集得到一个模型,k个新的训练集总共可以得到k个新的模型
      • (3). 对分类问题:将(2)中得到的k个模型采用投票方式得到分类结果;对回归问题:计算(2)中模型的均值作为最后的结果(所有模型的重要性相同!!!)
  • 2.boosting方法
    • 不论是在bagging还是boosting当中,所使用的多个分类器的类型都是一样的。但是,在boosting中,不同的分类器通过串行训练来获得的,每个新分类器都根据已训练出的分类器的性能来进行训练。boosting是通过关注被已有分类器错分的那些数据来获得新的分类器,,boosting方法有多个版本,下面介绍的是最流行的一个版本AdaBoosting算法。
    • 主要思想:
      • (1). 对每一次的训练数据样本赋予一个权重,并且每一次样本的权重分布依赖上一次的分类结果。
      • (2). 基分类器之间采用序列的线性加权方式来组合。

三、bagging方法与boosting方法对比

  • 1.样本选择上:
    • bagging方法:新的训练集是在原始训练集中采用有放回的方式采样样本的,从原始训练集中选取的每个新的训练集之间是相互独立的。
    • boosting方法:每一次的训练集不变,只是训练集中的每个样本在分类器中的权重发生变化,而权重是根据上一次的分类结果进行调整的。
  • 2.样本权重上:
    • bagging方法:使用均匀选取样本,每个样本的权重相同。
    • boosting方法:根据错误率不断调整样本的权重,错误率越大,权重越大。
  • 3.预测函数:
    • bagging方法:所有预测函数的权重相等
    • boosting方法:每个弱分类器都有相应的权重,对分类误差小的分类器会有更大的权重
  • 4.并行计算:
    • bagging方法:各个预测函数可以并行计算
    • boosting方法:各个预测函数只能顺序生成,因为后一个模型需要前一个模型的输出结果

四、集成学习的常见应用

  • 1.常见算法
    • Bagging + 决策树 = 随机森林
    • AdaBoost + 决策树 = 提升树
    • Gradient Boosting + 决策树 = GBDT
  • 2.基于错误率提升分类器的性能(AdaBoost算法原理介绍)
    • 2.1 AdaBoost算法介绍
      集成学习算法思想:使用弱分类器和多个样本来构建一个强分类器。AdaBoost是adaptive boosting的缩写,主要运行过程是:首先,对训练数据集中的每个样本进行训练,并赋予每个样本一个权重,这些权重构成一个向量D。一开始,这些样本的初始权重都是相同的!然后,在训练数据上训练出一个弱分类器并计算弱分类器的错误率。接着,在相同的训练数据上再次训练弱分类器。在分类器的第二次训练过程中,将会重新调整每个样本的权重!其中对第一次中分对的样本降低其权重,在第一次中分错的样本提高其权重。为了从所有弱分类器中得到最终的分类结果,AdaBoost还会对每个弱分类器都分配一个权重值alpha,这些alpha值是基于每个弱分类器的错误率进行计算出来的。
    • 2.2 错误率ε的定义如下:
      错误率计算公式.png
    • 2.3 alpha的计算公式
      alpha的计算公式.png
    • 2.4 AdaBoost算法流程如下
      AdaBoost算法流程.png
    • 2.5 对上图的解释如下:
      • 首先,对训练数据集中的每个样本进行初始化权重,此时每个样本的权重是相同的,这些权重构成了权重向量D;然后,经过第一个弱分类器后,训练集中每个样本的权重发生变化,根据第一个弱分类器的分类结果计算其错误率ε;接着,计算出alpha的值;计算出aplha值之后,可以对权重向量D进行更新,使得对第一个分类器分类结果中分类错误的样本,提高其权重。对分类正确的样本,降低其权重。权重向量D的更新方法如下:
        • 2.5.1 如果某个样本被第一个弱分类器分类正确,那么该样本的权重更新公式是:
          分类正确情况.png
        • 2.5.2 如果某个样本被第一个弱分类器分类错误,那么该样本的权重更新公式是:
          分类错误情况.png
      • 在计算出D后,AdaBoost又开始进行下一轮的迭代,AdaBoost算法会不断的重复训练和调整权重,直到训练错误率为0或弱分类器的数目达到用户的指定值为止。
    1. AdaBoost算法实战(基于单层决策树构建弱分类器)
      数据集可视化.png
  • 3.1 从上图可以看出,试着从某个坐标轴上选择一个值(即选择一条与坐标轴平行的直线)来将所有的蓝色圆点和橘色圆点分开,这显然是不可能的。这就是单层决策树难以处理的一个著名问题。通过使用多颗单层决策树,我们可以构建出一个能够对该数据集完全正确分类的分类器。
  #################数据集的可视化#####################

def loadSimData():
  """
  创建单层决策树的数据集
  """
  dataMat = np.matrix([[1., 2.1],
                       [1.5, 1.6],
                       [1.3, 1.],
                       [1., 1.],
                       [2., 1.]])
  classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
  return dataMat, classLabels


def showDataSet(dataMat, labelMat):
  """
  数据可视化
  """
  data_plus = []  # 正样本
  data_minus = []  # 负样本
  for i in range(len(dataMat)):
      if labelMat[i] > 0:
          data_plus.append(dataMat[i])
      else:
          data_minus.append(dataMat[i])
  data_plus_np = np.array(data_plus)
  data_minus_np = np.array(data_minus)  # 转化成numpy中的数据类型
  plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])
  plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1])
  plt.title("Dataset Visualize")
  plt.xlabel("x1")
  plt.ylabel("x2")
  plt.show()
if __name__ == '__main__':
  data_Arr, classLabels = loadSimData()
  showDataSet(data_Arr, classLabels)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值