题目大意:
给一个矩阵,求其最大子矩阵和。
其实只需要
n2
枚举子矩阵高度i行至j行,再将每一列这部分求和,再求一维最大连续子序列就行了。
至于最大连续子序列,可以找我代码中那样做,时间复杂度O(n)。
注意:多组数据又不说,巨坑!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#define ll long long
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-')c=getchar(),f=-1;
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=105,INF=0x7fffffff;
int n,ans,a[N][N],sum[N];
int getmx()
{
int res=-INF,tmp=0;
for(int i=1;i<=n;i++)
{
tmp=tmp>0?tmp+sum[i]:sum[i];
res=max(res,tmp);
}
return res;
}
int main()
{
//freopen("lx.in","r",stdin);
//freopen("lx.out","w",stdout);
while(scanf("%d",&n)!=EOF)
{
ans=-INF;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=getint();
for(int i=1;i<=n;i++)
{
memset(sum,0,sizeof(sum));
for(int j=i;j<=n;j++)
{
for(int k=1;k<=n;k++)sum[k]+=a[j][k];
ans=max(ans,getmx());
}
}
cout<<ans<<'\n';
}
return 0;
}