解题思路:
这道题是树分块模板题,要做树上莫队的可以打打基础。
树分块可以保证每一块内点的距离不超过2B。
我们开一个栈,dfs到一个节点,若该节点的几棵子树的大小>=B,那么就把他们分到一块,省会即为当前节点。
这样做会剩下不到B个节点,这时候就利用栈传到上一层节点就可以
最后会剩下不到B个节点,因为我们原来的块都是一定不超过2B的,于是把这B个节点放到最后一个块就可以。
#include<bits/stdc++.h>
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=1005;
int n,b,cnt,belong[N],key[N];
int tot,first[N],nxt[N<<1],to[N<<1];
int top,stk[N];
void add(int x,int y)
{
nxt[++tot]=first[x],first[x]=tot,to[tot]=y;
}
void dfs(int u,int fa)
{
int now=top;
for(int e=first[u];e;e=nxt[e])
{
int v=to[e];
if(v==fa)continue;
dfs(v,u);
if(top-now>=b)
{
key[++cnt]=u;
while(top!=now)belong[stk[top--]]=cnt;
}
}
stk[++top]=u;
}
int main()
{
//freopen("lx.in","r",stdin);
n=getint(),b=getint();
for(int i=1;i<n;i++)
{
int x=getint(),y=getint();
add(x,y),add(y,x);
}
dfs(1,0);
while(top)belong[stk[top--]]=cnt;
cout<<cnt<<'\n';
for(int i=1;i<=n;i++)cout<<belong[i]<<' ';
cout<<'\n';
for(int i=1;i<=cnt;i++)cout<<key[i]<<' ';
return 0;
}