解题思路:
这道题类似于bzoj1010玩具装箱,只不过从计算平方变成了计算p次方,计算式变化复杂,不能再用斜率dp,但决策单调性还是有的,所以直接二分维护每个决策的控制区间即可。
注意要用long double.
#include<bits/stdc++.h>
#define ll long double
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
if(c=='-')c=getchar(),f=-1;
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=100005;
const ll INF=1e18;
struct node
{
int l,r,p;
node(){}
node(int _l,int _r,int _p):l(_l),r(_r),p(_p){}
}q[N];
int T,n,L,p;
ll a[N],f[N];
char s[35];
ll calc(int j,int i)
{
return f[j]+pow(abs(i-j-1+a[i]-a[j]-L),p);
}
int find(const node &t,int x)
{
int l=t.l,r=t.r;
while(l<=r)
{
int mid=l+r>>1;
if(calc(x,mid)<calc(t.p,mid))r=mid-1;
else l=mid+1;
}
return l;
}
void dp()
{
int head=1,tail=1;
q[1]=node(0,n,0);
for(int i=1;i<=n;i++)
{
if(i>q[head].r)head++;
f[i]=calc(q[head].p,i);
if(calc(i,n)<calc(q[tail].p,n))
{
while(head<=tail&&calc(i,q[tail].l)<calc(q[tail].p,q[tail].l))tail--;
if(head<=tail)
{
int pos=find(q[tail],i);
q[tail].r=pos-1;
q[++tail]=node(pos,n,i);
}
else q[++tail]=node(0,n,i);
}
}
}
int main()
{
//freopen("lx.in","r",stdin);
T=getint();
while(T--)
{
n=getint(),L=getint(),p=getint();
for(int i=1;i<=n;i++)
{
scanf("%s",s);
a[i]=strlen(s)+a[i-1];
}
dp();
if(f[n]>INF)puts("Too hard to arrange");
else cout<<(long long)f[n]<<'\n';
puts("--------------------");
}
return 0;
}