bzoj1563: [NOI2009]诗人小G【决策单调性优化dp】

解题思路:

这道题类似于bzoj1010玩具装箱,只不过从计算平方变成了计算p次方,计算式变化复杂,不能再用斜率dp,但决策单调性还是有的,所以直接二分维护每个决策的控制区间即可。

注意要用long double.

#include<bits/stdc++.h>
#define ll long double
using namespace std;

int getint()
{
    int i=0,f=1;char c;
    for(c=getchar();(c!='-')&&(c<'0'||c>'9');c=getchar());
    if(c=='-')c=getchar(),f=-1;
    for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
    return i*f;
}

const int N=100005;
const ll INF=1e18;
struct node
{
    int l,r,p;
    node(){}
    node(int _l,int _r,int _p):l(_l),r(_r),p(_p){}
}q[N];
int T,n,L,p;
ll a[N],f[N];
char s[35];

ll calc(int j,int i)
{
    return f[j]+pow(abs(i-j-1+a[i]-a[j]-L),p);
}

int find(const node &t,int x)
{
    int l=t.l,r=t.r;
    while(l<=r)
    {
        int mid=l+r>>1;
        if(calc(x,mid)<calc(t.p,mid))r=mid-1;
        else l=mid+1;
    }
    return l;
}

void dp()
{
    int head=1,tail=1;
    q[1]=node(0,n,0);
    for(int i=1;i<=n;i++)
    {
        if(i>q[head].r)head++;
        f[i]=calc(q[head].p,i);
        if(calc(i,n)<calc(q[tail].p,n))
        {
            while(head<=tail&&calc(i,q[tail].l)<calc(q[tail].p,q[tail].l))tail--;
            if(head<=tail)
            {
                int pos=find(q[tail],i);
                q[tail].r=pos-1;
                q[++tail]=node(pos,n,i);
            }
            else q[++tail]=node(0,n,i);
        }
    }
}

int main()
{
    //freopen("lx.in","r",stdin);
    T=getint();
    while(T--)
    {
        n=getint(),L=getint(),p=getint();
        for(int i=1;i<=n;i++)
        {
            scanf("%s",s);
            a[i]=strlen(s)+a[i-1];
        }
        dp();
        if(f[n]>INF)puts("Too hard to arrange");
        else cout<<(long long)f[n]<<'\n';
        puts("--------------------");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值