读《炫酷反演魔术》有感——各种反演(待填坑)

要以这个开头:

我爱你反演!❤

阅读原文

以下内容只是为了给自己看
%%%VFleaKing

下面进入正题:

什么是反演

在这里插入图片描述

二项式反演

ppt一开始给了一道题目:
在这里插入图片描述

这是个很简单的容斥问题:
F ( n ) = ∑ k = 0 n ( − 1 ) k ( n k ) ( n − k ) ! F(n)=\sum_{k=0}^{n}(-1)^{k}\tbinom{n}{k}(n-k)! F(n)=k=0n(1)k(kn)(nk)!

原文用了和通俗易懂的说法和图来解释这个容斥,风趣幽默,拉近与读者的距离
怎么变成评论文学价值了?
在这里插入图片描述
在这里插入图片描述

原本用了一些篇幅来写为什么这个容斥系数要么是-1要么是1,这是我从来没有想过的。(菜鸡的微笑)

其实思考一下可以发现,(算了搬原文)
在这里插入图片描述
在这里插入图片描述
刺不刺激,惊不惊喜!
(菜鸡捂嘴表示惊叹)

这个大哥(叫一声大哥)让我弄懂了出生到现在没有想过的东西!!!!

从另一个角度看上面式子左半边是!
∑ k = 0 n ( − 1 ) k ( n k ) = [ n = 0 ] \sum_{k=0}^{n}(-1)^k\tbinom{n}{k}=[n=0] k=0n(1)k(kn)=[n=0]

然后用反演思想看一下~
我们设 F ( n ) F(n) F(n)表示n个人随便站的方案数
G ( n ) G(n) G(n)表示n个人没有一个人站对的方案数

那么 F ( n ) = ∑ k = 0 n ( n k ) G ( n ) F(n)=\sum_{k=0}^{n}\tbinom{n}{k}G(n) F(n)=k=0n(kn)G(n)

注意注意!然后要开始反演了!!!!

原文称为"魔术":

简单易懂的废话:
G ( n ) = ∑ m = 0 n [ n − m = 0 ] ( n m ) G ( m ) G(n)=\sum_{m=0}^{n}[n-m=0]\tbinom{n}{m}G(m) G(n)=m=0n[nm=0](mn)G(m)
一开始我还一脸懵逼,后来发现这个式子等于
G ( n ) = G ( m ) [ m = n ] G(n)=G(m)[m=n] G(n)=G(m)[m=n]

然后上面那个东西用到啦!!
复习一下:
∑ k = 0 n ( − 1 ) k ( n k ) = [ n = 0 ] \sum_{k=0}^{n}(-1)^k\tbinom{n}{k}=[n=0] k=0n(1)k(kn)=[n=0]
所以代入:
G ( n ) = ∑ m = 0 n ∑ k = 0 n − m ( − 1 ) k ( n − m k ) ( n m ) G ( m ) G(n)=\sum_{m=0}^{n}\sum_{k=0}^{n-m}(-1)^k\tbinom{n-m}{k}\tbinom{n}{m}G(m) G(n)=m=0nk=0nm(1)k(knm)(mn)G(m)

我一直不知道这个东西 ( n − m k ) ( n m ) \tbinom{n-m}{k}\tbinom{n}{m} (knm)(mn)怎么转换,今天懂了!
等于在n里面选m个数然后在余下的里面再选k个数。
所以等价于: ( n k ) ( n − k m ) \tbinom{n}{k}\tbinom{n-k}{m} (kn)(mnk)

所以原式=
G ( n ) = ∑ m = 0 n ∑ k = 0 n − m ( − 1 ) k ( n k ) ( n − k m ) G ( m ) G(n)=\sum_{m=0}^{n}\sum_{k=0}^{n-m}(-1)^k\tbinom{n}{k}\tbinom{n-k}{m}G(m) G(n)=m=0nk=0nm(1)k(kn)(mnk)G(m)

下面他的操作有点迷:在这里插入图片描述
这东西我愣是没有看懂,后来发现。
假设 k = n − m − p ( 0 ≤ p ≤ n − m ) k=n-m-p(0\leq p\leq n-m) k=nmp(0pnm)
那么 m = n − k − p m=n-k-p m=nkp
所以枚举p过程中发现其实上面那条式子就是成立的了。
枚举的每一个k都有所有确定的m=n-k-p与之对应

综上所述,上述式子正确!

G ( n ) = ∑ k = 0 n ( − 1 ) k ( n k ) ∑ m = 0 n − k ( n − k m ) G ( m ) G(n)=\sum_{k=0}^{n}(-1)^k\tbinom{n}{k}\sum_{m=0}^{n-k}\tbinom{n-k}{m}G(m) G(n)=k=0n(1)k(kn)m=0nk(mnk)G(m)

”注意最右边的那个小朋友!其实就是 F F F!“

对比上面F的式子:
F ( n ) = ∑ k = 0 n ( n k ) G ( n ) F(n)=\sum_{k=0}^{n}\tbinom{n}{k}G(n) F(n)=k=0n(kn)G(n)

发现:
G ( n ) = ∑ k = 0 n ( − 1 ) k ( n k ) F ( n − k ) G(n)=\sum_{k=0}^{n}(-1)^k\tbinom{n}{k}F(n-k) G(n)=k=0n(1)k(kn)F(nk)
把下表搞好看点就是
G ( n ) = ∑ k = 0 n ( − 1 ) n − k ( n k ) F ( k ) G(n)=\sum_{k=0}^{n}(-1)^{n-k}\tbinom{n}{k}F(k) G(n)=k=0n(1)nk(kn)F(k)

这就是著名的二项式反演!
F ( n ) = ∑ k = 0 n ( n k ) G ( n ) F(n)=\sum_{k=0}^{n}\tbinom{n}{k}G(n) F(n)=k=0n(kn)G(n) G ( n ) = ∑ k = 0 n ( − 1 ) n − k ( n k ) F ( k ) G(n)=\sum_{k=0}^{n}(-1)^{n-k}\tbinom{n}{k}F(k) G(n)=k=0n(1)nk(kn)F(k)

至此,二项式反演告一段落

看到这里我作为菜鸡看得满头大汗
好的大哥,您成功激起了我对反演的兴趣呢!

莫比乌斯反演

原文叫做:在这里插入图片描述
又是一道题目出来:
在这里插入图片描述
还是设!
F ( n ) F(n) F(n) 表示长度为 n n n 的字符串的个数。
G ( n ) G(n) G(n) 表示长度为 n n n 的且周期为 n n n 的字符串的个数。

F ( n ) = ∑ d ∣ n G ( d ) F(n)=\sum_{d|n}G(d) F(n)=dnG(d)

这就是典型的莫某某反演的形式
然后?

发现我们刚才是怎么搞出二项式反演的?
用一句废话然后带进去不是吗?

在这里我们同样定义:
μ ( n ) \mu(n) μ(n)满足
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]
为什么这次是1?
因为刚刚判断相等是用减法,这次我们用除法,相同的数相除当然是1咯!

又是一句废话开始魔术~
G ( n ) = ∑ m ∣ n [ n m = 1 ] G ( m ) G(n)=\sum_{m|n}[\frac{n}{m}=1]G(m) G(n)=mn[mn=1]G(m)

然后顺理成章地代入:
G ( n ) = ∑ m ∣ n ∑ d ∣ n m μ ( d ) G ( m ) G(n)=\sum_{m|n}\sum_{d|\frac{n}{m}}\mu(d)G(m) G(n)=mndmnμ(d)G(m)

再用刚刚的方法,用d把m表示出来,就是 m ∣ n d m|\frac{n}{d} mdn
然后?顺理成章:
G ( n ) = ∑ d ∣ n μ ( d ) ∑ m ∣ n d G ( m ) G(n)=\sum_{d|n}\mu(d)\sum_{m|\frac{n}{d}}G(m) G(n)=dnμ(d)mdnG(m)
F F F君好久不见~“

G ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) G(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) G(n)=dnμ(d)F(dn)
换一下:
G ( n ) = ∑ d ∣ n μ ( n d ) F ( d ) G(n)=\sum_{d|n}\mu(\frac{n}{d})F(d) G(n)=dnμ(dn)F(d)

这样就得到了莫比乌斯反演了~

F ( n ) = ∑ d ∣ n G ( d ) F(n)=\sum_{d|n}G(d) F(n)=dnG(d) G ( n ) = ∑ d ∣ n μ ( n d ) F ( d ) G(n)=\sum_{d|n}\mu(\frac{n}{d})F(d) G(n)=dnμ(dn)F(d)

后面又一道题目,我是跪着看完的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值