//1Y真是爽啊
题意:要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
分析:根据题意a=b*x a=m*y+n
得b*x-m*y=n;
根据exgcd求得一组解x,y
#include "stdio.h"
#include "string.h"
#include "algorithm"
#define m 9973
using namespace std;
int exgcd(int a,int b,int &d,int &x,int &y){
if(!b) {d=a;x=1;y=0;}
else {exgcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int gcd(int a,int b)
{
if(a%b==0)
return b;
return gcd(b,a%b);
}
int main()
{
int x0,y0,x,y;
int g,t;
int n,a,b,m1,b1;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&b);
g=gcd(b,m);
m1=m/g;
b1=b/g;
exgcd(b,m,g,x0,y0);
x0=x0*(n/g);
x=x0+m1;
while(x<0)
x+=m;
printf("%d\n",x%m);
}
return 0;
}