摘要:我们提出了一种从单一图片去除运动模糊的算法。我们的方法在去模糊图像的计算过程中,对于卷积核的估计和清晰图像,采用统一的概率模型。我们分析了当前去模糊方法中通常存在的人工痕迹的产生原因,而后在我们的概率模型中引入了一些新的术语。这些术语包括模糊图像噪声的空域随机模型,还有新的局部平滑先验知识。通过对比度约束,即使是低对比的模糊图像,也能减少人工振铃效应。最后,我们描述了一种有效的优化方案,通过交替估计模糊核和清晰图像的复原过程直到收敛。经过这些步骤,我们能够在一个低的计算复杂度的时间内获得一个高质量的清晰图像。我们的方法生成的图像质量相当于用多张模糊图片生成的清晰图片的效果,而后者的方法需要额外的硬件资源。
注:本文系我10年翻译的香港中文大学贾佳亚发表在SIGGRAPH ASIA 2008的文章,很多地方翻译的不好,敬请见谅。
翻译稿请从这里下载。
原文下载地址:http://appsrv.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/
贾佳亚的这篇论文是盲反卷积算法的经典文献,涉及到很多现代图像处理的优化方法。后来的很多快速算法都是对他的改进。这个算法的缺点就是太慢,其处理效果还是很不错的。