解决python3.9,import torchvision报错问题

在尝试导入torchvision时遇到错误,原因是_PILLOW_VERSION_字段在PIL模块中未找到。错误源于 torchvision ransformsfunctional.py 文件。解决办法是手动更新functional.py文件,修正导入的字段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错:

>>> import torchvision
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\tplihangyang\anaconda3\lib\site-packages\torchvision\__init__.py", line 2, in <module>
    from torchvision import datasets
  File "C:\Users\tplihangyang\anaconda3\lib\site-packages\torchvision\datasets\__init__.py", line 9, in <module>
    from .fakedata import FakeData
  File "C:\Users\tplihangyang\anaconda3\lib\site-packages\torchvision\datasets\fakedata.py", line 3, in <module>
    from .. import transforms
  File "C:\Users\tplihangyang\anaconda3\lib\site-packages\torchvision\transforms\__init__.py", line 1, in <module>
    from .transforms import *
  File "C:\Users\tplihangyang\anaconda3\lib\site-packages\torchvision\transforms\transforms.py", line 17, in <module>
    from . imp

<think>好的,我现在需要帮助用户在Windows环境下配置Python 3.9和CUDA 11.6或11.3来运行Mask R-CNN模型。根据用户提供的引用内容,特别是引用[1]中的信息,用户已经尝试过使用CUDA 11.3和PyTorch 1.11.0,并且成功配置了maskrcnn_benchmark的环境。用户现在可能希望使用更高版本的CUDA 11.6,或者保持与之前成功的配置一致。我需要先确认CUDA版本与PyTorch的兼容性。 首先,用户需要在Windows上安装合适的CUDA工具包。根据PyTorch官方文档,CUDA 11.3对应的PyTorch版本是1.11.0,而CUDA 11.6可能需要更高版本的PyTorch,但需要检查PyTorch是否支持Python 3.9。例如,PyTorch 1.12.0支持CUDA 11.6,但需要确认Python版本兼容性。 接下来,用户需要创建conda环境。引用[1]中提到的命令是正确的,即`conda create --name maskrcnn_benchmark -y`,然后激活环境。之后安装PyTorch和相关库。对于CUDA 11.3,安装命令可能是`conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch`,而CUDA 11.6可能需要调整版本号,但需要核实PyTorch是否提供对应版本的预编译包。 然后,用户需要安装Mask R-CNN的具体实现库,比如detectron2或maskrcnn-benchmark。这里需要注意这些库对PyTorch和CUDA版本的依赖。例如,detectron2可能对PyTorch版本有特定要求,需要查看其官方文档。如果用户遇到类似引用[2]中的模块报错,可能需要手动安装某些依赖或调整版本。 另外,数据预处理和存储的基本技能也很重要,如引用[3]所提到的。用户可能需要安装额外的数据处理库如numpy、pandas等,但这些通常可以通过conda或pip安装。 过程中可能遇到的问题包括环境冲突、CUDA驱动不兼容、缺少依赖库等。需要指导用户检查CUDA驱动版本是否与CUDA Toolkit匹配,比如安装CUDA 11.3需要NVIDIA驱动程序版本>=465.89,而CUDA 11.6可能需要更高版本驱动。 总结步骤:安装CUDA工具包,创建conda环境,安装PyTorch和对应CUDA版本,安装Mask R-CNN相关库,处理依赖问题。需要详细写出每个步骤的具体命令和可能遇到的错误解决方案,参考用户提供的引用内容中的方法。</think>### 配置Python 3.9与CUDA 11.6/11.3运行Mask R-CNN的步骤 #### 1. **安装CUDA工具包与驱动** - **CUDA 11.3**:需NVIDIA驱动版本≥465.89[^1]; - **CUDA 11.6**:需驱动版本≥512.15(通过`nvidia-smi`检查驱动版本)。 - 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载对应版本的CUDA Toolkit并安装。 #### 2. **创建Conda环境** ```bash conda create --name maskrcnn_benchmark python=3.9 -y conda activate maskrcnn_benchmark ``` #### 3. **安装PyTorch与CUDA支持** - **CUDA 11.3**: ```bash conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch ``` - **CUDA 11.6**(需PyTorch≥1.12.0): ```bash pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116 ``` #### 4. **安装Mask R-CNN依赖库** - **若使用`detectron2`**: ```bash pip install git+https://github.com/facebookresearch/detectron2.git ``` 或预编译版本(需匹配CUDA版本): ```bash pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.11/index.html ``` - **若使用`maskrcnn-benchmark`**:需从源码编译,注意CUDA版本兼容性。 #### 5. **验证CUDA与PyTorch兼容性** ```python import torch print(torch.__version__) # 应输出1.11.0或1.12.1 print(torch.cuda.is_available()) # 应返回True ``` #### 6. **处理常见报错** - **GnuTLS报错**:更新conda源或手动安装依赖[^2]: ```bash conda install -c conda-forge pytorch-wavelets ``` - **CUDA内存不足**:调整batch size或检查显存占用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值