Flyway与Liquibase对比

Spring Boot为两款流行的数据库迁移库提供了自动配置支持。
    Flyway(http://flywaydb.org)
    Liquibase(http://www.liquibase.org)

1. 用Flyway定义数据库迁移过程

    1)原理:Flyway是一个非常简单的开源数据库迁移库,使用SQL来定义迁移脚本。它的理念是,每个脚本都有一个版本号,Flyway会顺序执行这些脚本,让数据库达到期望的状态。它也会记录已执行的脚本状态,不会重复执行。Flyway脚本就是SQL。让其发挥作用的是其在Classpath里的位置和文件名。Flyway脚本都遵循一个命名规范,含有版本号。例如:V2_test.sql。所有Flyway脚本的名字都以大写字母V开头,随后是脚本的版本号。后面跟着两个下划线和对脚本的描述。Flyway脚本需要放在相对于应用程序Classpath根路径,在src/main/resources/db/migration路径下。在应用程序部署并运行起来后,Spring Boot会检测到Classpath里的Flyway,自动配置所需的Bean。Flyway会依次查看/db/migration里的脚本,如果没有执行过就运行这些脚本。每个脚本都执行过后,向schema_version表里写一条记录。应用程序下次启动时,Flyway会先看schema_version里的记录,跳过那些脚本。

    2)优点:SQL用起来便捷顺手。

    3)缺点:无法跨平台使用。

2. 用Liquibase定义数据库迁移过程

    1)原理:支持XML、YAML和JSON格式的迁移脚本。默认情况下,Bean会在/db/changelog(相对于Classpath根目录)里查找db.changelog-master.yaml文件。Liquibase变更集都集中在一个文件里。changeset命令后的那行有一个id属性,要对数据库进行后续变更。可以添加一个新的changeset,只要id不一样就行。此外,id属性也不一定是数字,可以包含任意内容。应用程序启动时,Liquibase会读取db.changelog-master.yaml里的变更集指令集,与之前写入databaseChangeLog表里的内容做对比,随后执行未运行过的变更集。

    2)优点:可以跨平台使用

    3)缺点:迁移脚本需要花费精力去维护

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值