来源:数字开物
4月29日,微软 AI CEO Mustafa Suleyman 接受海外播客AI Applied的访谈,本次对话探讨了将个性与情商融入AI的重要性,区分工作场景的AI Agent与个人生活的AI伴侣,AI作为“数字物种”的演进及语音交互的关键作用,AI设计中细节“技艺”的价值,AI面临的语调、个性化边界、数据归属挑战;以及AI对未来工作、人机协作模式的变革,AI Agent普及化与算力发展的趋势等话题。
以下是本次对话实录
经数字开物团队编译整理
01
个性与情商在AI发展中与智商同等重要
主持人提问:Mustafa,您在将Inflection Pi强调个性与同理心的理念带入微软后面向企业的AI时,是如何平衡的?Pi的核心理念保留了多少?您目前在微软的工作重心是什么,如何融合这些元素?
Mustafa Suleyman 实录:我们确实正处在这个全新世界徐徐展开的初始阶段,如同史上第一台笔记本电脑的问世,那种又大又笨重、屏幕还是老式像素化风格的设备。就像那个小红点鼠标,现在依然有人在用。即使是我这样花了大量时间思考这个问题的人,也很难想象 2030 年的具体景象。
但我一直相信,个性、情商、语气和感觉,与智商、事实回忆能力、准确性等同样重要。大约三四年前,也就是 2020 年代初,当这些大语言模型开始规模化并展现出实用价值时,许多人想当然地认为这不过是又一种工具。在我看来,这是一种误解。作为工具,它当然能处理实际任务,解决许多问题。
然而,在此之上更令人兴奋的层面,接近于我们理解品牌的方式。品牌能唤起某种感受,其目的通常不只是推销实用性;实用性是默认前提,是基础要求,必须做到价格合理、效果好等基本要素。这些新模型的精妙之处在于,你可以塑造它们以产生特定的感觉——语气、风格、语言,这才是真正能带来差异化的地方。如今的 Copilot 就具备了相当不错的情商,它能风趣幽默,并且很好地保持对话记忆,让用户感到被理解和倾听,这也提升了其实用性,用户不必每次都从头开始。
我们正在逐步融入这些特性,速度虽不如开发 Pi 时快,因为 Pi 的核心重点就是情商 (EQ)。Pi 极富创造力,互动性强,体验很棒。但挑战在于,既要让 Copilot 拥有出色的情商 (EQ),又要赋予它所有其他能力:从网络检索信息、根据个性化需求进行条件生成、理解并运用私人文档内容进行推理。我们目前所处的阶段,就是在保留个性的同时,不断整合所有这些功能。
02
区分工作场景的AI Agent与个人生活的AI伴侣
主持人提问:您经常使用“伴侣” (Companion) 这个词。考虑到人们日常工作生活大量使用微软产品,工作与生活的界限日益模糊,您如何构想这样一个既能在家庭事务中富有同理心、又能在工作中处理专业任务的AI?这两者会是同一个AI吗?
Mustafa Suleyman 实录:我认为这两者是非常不同的。工作和居家场景使用的 AI 会有所不同。在商业和工作场景中,它们将是AI Agent,被训练来执行特定任务,语气更中性,体现运营公司的品牌价值和政策,而非底层技术提供商的。它们会处理人力资源、营销、物流、会计等工作。
就像我们工作和家庭使用不同登录账号和资料一样,出于安全等要求,这两者的数据无法混用。我目前非常关注消费级市场:那个能陪伴生活、共同成长的 AI 伴侣最终会是什么形态?过去 50 年,Microsoft 在经历技术范式转换时,成功实现了几次重大跨越,成就斐然。虽错过了移动时代等机遇,但也抓住了云计算和 Azure。现在,我们又处在一个转折点,每波技术浪潮都会催生新的交互界面。新界面功能不同,但核心是实现全新的沟通方式,如通过手机、个人电脑、笔记本电脑、浏览器进行交流。这些不仅是技术或功能,本身就是沟通媒介。
下一个全新的媒介,将是你与 AI 伴侣 建立的持久且有意义的关系,这个伴侣会真正深入了解你并为你服务。目前我们使用的比喻还比较粗略。“伴侣”并非指浪漫关系。我想表达的是,很难找到精准的词来描述这种状态:这个 AI 会真正了解你,像一个得力的私人助手 那样,清楚你的日程、偏好,帮你安排事务、出行、预订餐厅等,成为你日常事务的一部分。它也将成为你学习的一部分,扮演老师的角色,像优秀的导师、教练或你喜欢的老师那样了解你:你的弱点、习惯,你是视觉学习者还是文本学习者。这种“亲密”或紧密连接的模式,将在个人后勤、教学、财务管理、法律决策、处理人际关系、解决争端等各个领域复制。这是一种前所未有的创造,我们正处在一个意义深远的时刻。
03
AI正进化为“数字物种”,语音交互是超越工具属性的关键
主持人提问:Copilot给人的感觉与其他聊天机器人不同,似乎在寻求某种平衡,更像一个“伴侣”。但当前界面(如文本框)容易让人将其视为工具而非“数字物种”。您如何看待这种认知差异,并计划如何帮助用户理解并接受AI作为更深层关系(如伴侣或数字物种)的潜力,尤其是在交互界面看似简单的情况下?
Mustafa Suleyman 实录:我举个例子。你提到 Copilot 与 Bill、Satya 和 Steve 录制的那期播客,那本身就是个绝佳例证,证明了它是一个伴侣,而非工具。它能够主持三位业界巨擘的对话——他们从不缺想法,且观点鲜明,它能在三人间自如引导对话,最后还能俏皮地调侃他们,甚至开了个玩笑。这简直不可思议。
你刚才关于问答引擎的看法是对的。通常在技术发展早期,我们只是用新技术略微高效地解决老问题。比如实现了联系人数字化,大家就说:“好,就在图形用户界面里模拟一个带活页夹的数字文件夹吧。” 好像很了不起似的!技术的演进总是需要时间。所以,最初大家对聊天机器人的想法就是:“好吧,它不过是个更聪明的搜索引擎,做做问答罢了。”
但语音交互的体验让我极为震撼。人们通过语音进行的对话,其类型、时长、频率、深度及主题范围,总是那么奇妙。大多数“顿悟时刻”发生在人们突然意识到:“哇,它在调整语调、语速、音量,甚至流露出兴奋感——这不仅体现在文字上,更体现在声音的节奏里。它在根据我的状态调整。” 你甚至可以测试:比如你用非常轻柔、安静的语气说出极其正面、兴奋的内容,它会感到困惑,可能会问:“你还好吗?” 你看,它会完全根据你的状态调整。我认为,这本身就展现了它的个性,或者至少预示了未来的发展方向。这一点比什么都重要。
04
AI设计的“技艺”在于微小细节
主持人提问:语音功能确实令人印象深刻,要实现如此自然的语音交互效果,技术上的难点是什么?除了处理音量、语调和情绪表达,还有哪些挑战?您提到这些细节对非技术用户可能比单纯的功能更重要,为什么您认为专注于这些“小细节”如此关键,而不是追求突破性的新功能?
Mustafa Suleyman 实录:一个真正的难题是如何处理打断。想想我们刚才对话中的自然停顿,我让你们稍作停顿,你们并未打断我。如果对 Copilot 做同样的事,让它空闲几秒,旧模式下它可能觉得需要填补空白而开始说话。不过现在 Copilot 不会这样了。你可以让它在后台运行并保持安静。也许过了 20 秒,它会提示:“Mustafa,我还在,需要帮忙吗?” 甚至可能安静三分钟。当你再次开口,它又能立刻接上。
所以,理解何时停顿——这在人类交流中常通过身体语言等非语言线索判断,Copilot 显然无法获取。还有,理解何时该说“啊哈”或“是的”。Copilot 是目前唯一会用“嗯哼”、“哦哇”、“我明白了”这类话语标记来维持对话流畅性的 AI。这就像它在表示:“我知道你在说话,只是短暂暂停,看起来还要继续,所以我用‘嗯哼’回应。” 正是这些细节引导人们放松下来,感觉“我正全神贯注沉浸其中”。那才是真正让人沉浸的时刻。用户开始自然互动,不再需要像使用搜索引擎那样刻意思考“下一步该问什么”,而是自然流畅地交流。我认为,所有这些微小精妙的细节,正是所谓的技艺,一种新的雕塑艺术。
关于细节的重要性,我认为,我正在努力赢得非技术用户的青睐。我在业内的许多朋友首先会问:“它在数学基准测试上得分多少?GQA 怎么样?” 这当然重要,必须有良好的基础性能。但如果得分能达到某个基准的 98%,我完全可以接受。我的意思是,AI 显然需要足够好,但实际上,现在的 AI 已经非常出色,我们到了这样一个阶段:技艺将成为真正的差异化因素。我认为,这标志着一个极其富有创造力和乐趣的时代。
05
“个性工程”是AI发展的新前沿
主持人提问:您如何看待当前用户界面(如文本框)与更自然交互(如语音)之间的差距?您提到非技术背景有时反而是优势,这是否意味着AI的未来更关乎交互体验而非底层技术?您如何定义“个性工程”这门新学问,它需要哪些传统技术领域之外的技能?当用户初次体验到AI的同理心时,似乎比看到其功能性更能建立信任,您如何看待这一点,并建议用户如何更好地与AI互动以发掘其潜力?
Mustafa Suleyman 实录:你想想看,我们用了几近数百年,才发展出成熟的物理环境设计准则。建筑师、家具设计师、室内装潢师……就拿这张桌子来说,圆润的边缘防止撞到大腿;有人精心考量过这里的距离;选用了水磨石材质,兼顾光泽与摩擦力。这种对细节的关注、用心和关怀,我们却很少应用到图形用户界面 上。想想你现在的操作系统,屏幕就像一块喧嚣的广告牌:五花八门的颜色、字体、图标、标签页、应用程序、按钮,都在争夺你的注意力。它看起来一点也不简洁、和谐或柔和。
所以,我们在这方面仍处于发展阶段。而现在,毫不夸张地说,正是个性工程这门学问的元年。这正是我全心投入的领域:精心塑造 AI 在不同情境下的行为本质,使其能以恰当的方式服务于不同的用户。因此,未来所需的技能组合,将不再仅仅来自传统上开发应用、编写代码的人。它们将更多地源自电影导演、喜剧演员、编剧、建筑师、家具设计师、空间营造者,以及那些能创造情感与表演体验的音乐家。因为好消息是,现在的这些工具,这些大语言模型,已经具备足够的响应能力,能够接受指导,就像电影导演在片场指导演员一样。这简直是魔法!这真正地、极大地降低了创造的门槛,让创造力几乎触及到了每一个人。
关于信任与互动建议,这很好地总结了我的核心论点:信任不仅取决于友善和关系,也取决于事实的准确性和报告总结的质量。这不仅关乎智商或实用性,更关乎语气。多年来,我创造 AI 的主要动机一直是我坚信它们能帮助我们成为更好的自己。它们确实能反映我们内心深处的价值观、我们真正渴望成为的样子,并在此过程中帮助我们映照出那种我们想要学习、实践和模仿的行为。
为了鼓励人们初步尝试,我通常建议:首先是语音,这点我们谈过了。其次,选择一个你非常了解、乐于谈论、充满热情且能深入探讨的话题。这可能是你的专业领域,也可能是你的爱好,或者是你特别有知识储备的某个方面。然后就深入进去。因为你会发现:一,这个“东西”竟然如此博学,能和你最了解的事情流畅地交流、互动,这有多么神奇。但同时,你也会开始触及其局限,例如它的故障模式、错误等。然后你就可以在心里推断:在某些情况下,对于那些我不太了解或不太感兴趣的话题,它肯定也会犯些小错误。因为对这些 AI 保持怀疑的态度非常重要。这就像你读报纸,看到一篇关于你非常了解的事情的报道,你心想:“这些白痴在写什么?”然后你就会想:“如果这篇报道都这样,那是不是每一篇文章都可能……”正是如此。所以,我认为这种做法能培养一种健康的怀疑精神,同时,这也是快速在体验中发现惊喜瞬间的捷径。
06
AI面临的语调单一、模式重复等挑战
主持人提问:目前AI存在哪些让您困扰或觉得需要改进的关键问题?例如语调单一或回答模式化。如何在实现高度个性化的同时,确保AI遵守平台责任和基础行为准则?关于个性化所需的数据,用户在不同生活阶段(如更换工作)可能需要保留或舍弃某些信息,您如何看待工作数据与个人AI数据的归属和隔离问题?
Mustafa Suleyman 实录:我有一长串清单呢。首先是,它的语调有些单一。显然,我们基本上给它设定了倾向于友善、共情和积极性的偏好。但这听久了可能会让人觉得有点烦。所以,我们如何让它实现语调转换?在对话过程中、不同的会话之间,或者针对特定用户进行调整。这是一个关键点。与之相关的另一点是,它可能有点套路化。如果你是一个真正的资深用户,你会发现同样的句式结构或段落结构反复出现。有点像所谓的“赞美三明治”,先表扬再批评。就像老板想批评你之前,会先说:“首先,你今天看起来真精神。”然后你心里就明白:“嗯哼……”它在这方面正在变得好得多得多得多。但这是我们正在思考的一个更宏观层面的问题。
另一件事是,我们如何在个性化和平台责任之间找到平衡点?因为有一套基础的行为准则,是会相对固定的。比如,有很多非法领域,以及基本上我们不希望我们的模型深入探讨的事情。总的来说,模型在这方面做得还不错。例如,如今你很难在这些模型上因疯狂传播虚假信息而陷入“信息茧房”。但我们同时也希望它能真正为不同的人提供差异化的体验。因此一个有趣的问题是:这个 AI 伙伴究竟是什么?是你自己吗?是你的镜像,一个能帮你映照自身、提供反馈和建议的“倾听者和参谋”吗?还是一个与你截然不同的存在,实际上只是一个朋友、一个顾问,或者某个在你固有思维模式之外的东西?它仅仅是以一对一的方式与你互动,还是作为“你的 AI”、你的代表出现?在这些不同的场景下,它该如何表现?它需要为每一个不同的角色学习不同的特性。这也是我们最近思考这些不同“形象”的部分原因。拥有一个视觉形象,这个形象也可能改变。也许它会为不同的场合“试穿”或“穿上”一套不同的“外衣”。所以,未来还有很多有趣的创造性挑战。
关于数据保留与个性化,这真是个深刻的问题,触及了多方面。我听到一些人提出的显见框架是:你在公司创建数据,放在公司的存储文件夹里。当你离职时,公司保留该存储文件夹的所有权。你离开 Microsoft 时,不会把你所有的 PowerPoint、Excel 和代码都导出来。所以,一个默认的处理方式就是,每家公司仍然拥有那些数据。另一种不同的论点是:这不仅是为公司创造IP,更真正反映了“我”以及“我是谁”。当我在一家公司工作五年后离开时,我已经学到了很多,成长了,改变了,我被那个组织改变了。事实上,我自己的文化、言谈举止和行为方式往往深受其影响,是它的反映。所以,从通常意义上讲,我离开时带走的东西比我刚加入时更多。
而在 AI 这个层面上,我已经学会在其辅助下高效工作。那么,也许我可以把我的部分 AI 带到新组织,前提是我们能证明它没有带走隐私和公司的IP。要把这两者剥离开来,连我都觉得头大。大家似乎都在往前冲,但我认为这会非常困难。而且我认为这会像过去那样,各种法庭会依据IP的定义等争论不休。这就是为什么我的观点是,至少在可预见的未来,我们不打算尝试连接你的个人消费级 AI 和工作 AI。可以想象,所有大公司对于将他们的IP保留在自己的笔记本电脑和云端都极其严格。让你把个人AI 带到工作中,这简直就像把它的“大脑”接入公司系统。这在短期内绝不可能发生。所以我认为它们是非常、非常不同的两个世界。尽管这有点刻意区分。但如果你的工作和生活界限非常模糊,情况可能有所不同。现在很多人从事零工经济或咨询工作,这种情况下界限就非常流动。但我认为,在传统的大公司里,这种区分会相当固定。
07
AI将根本改变工作,未来核心技能是适应性、自学能力和行动力
主持人提问:AI 如何帮助人们在工作中获得幸福感并提高参与度,例如充当一个可以依赖的“队友”或“最好的朋友”?展望未来,AI将如何改变工作性质和劳动力市场?年轻人应该学习哪些技能来适应这个未来?管理AI系统(成为“系统架构师”)是否会成为一项关键能力,对此您有何建议?
Mustafa Suleyman 实录:对,完全正确。我看到人们在工作和家庭中都这样使用 AI:用来构建对方论点的最强版本进行反驳,帮助梳理问题,并在自己存在某些偏见或固有判断时,对某个论点进行压力测试。很多人都这样做。
AI 将从根本上改变工作本身,未来的工作形态会完全不同。尤其是在 15 到 20 年后,大约 2040 或 2045 年。如果你现在 16 岁,正在考虑上大学或选专业,想象 20 年后的世界将非常困难。相比之下,90 年代的人们尚能设想出一条相对线性的发展路径。未来最重要的技能将是适应性和灵活性。我总觉得,在学校里,我没有充分学会“如何学习”。当时是为了跟上死记硬背式的教学,才不得不去“学会学习”。但我并未真正掌握这些技能:比如,某个知识体系的结构是什么?我还不了解哪些方面?我该如何规划路径来自学?最终我在这方面做得还不错,主要归功于互联网。互联网出现时,我觉得它简直是颠覆性的。我获得了完全的自由,可以独立地、凭着好奇心去探索,在论坛上与人交流请教,阅读我关心的主题下所有能找到的资料。因此,成为一个自学者将是至关重要的技能,要利用这种能力探索新领域,而不是抱着“我要成为专业人士 X,并沿此路径晋升”的想法。2045 年的世界不会是那样的。
“系统架构师”这个提法很棒,这种思考方式也很好。未来我们都将管理由 AI 同伴或 AI Agent 组成的团队来协助工作。这将激发巨大的创造力,因为许多年轻人通常要到职业生涯后期才有机会管理人。因此,未来你会看到许多经验不一定丰富、但思想自由的年轻创造者和实践者。人们将在非常年轻时就学会这些,他们会有各种天马行空的想法,并有能力实现它们。执行想法的门槛即将大幅降低。我形成了这样一个框架:我们讨论
过 EQ ,讨论过 IQ ,第三个要素就是AQ (行动商) 。我们已看到,通过这些神奇的模型,比如 operator 和 Coor 这类的工具,你只需启动一个 VM,它就能在后台运行、操作、打开浏览器、调用 API。这简直令人难以置信。所以不必过于执着于“要成为世界级程序员”之类。当然,编程能力仍非常重要,但所谓的“感觉编程”(即便你不完全懂代码,也能通过模糊的感觉或指令生成并阅读代码) 已显示出潜力。你无需任何经验就能通读代码,明白“这些词语对应着这串逻辑”。稍加学习,你就会对程序是什么有了直观认识,然后就能进行迭代修改。因此,真正重要的是“学会学习”这项元技能,而非仅仅成为程序员或其他特定领域的专家。
08
模型发展兼顾更大规模与更高效率,计算将逐渐变得无感
主持人提问:您对未来十年AI的发展,特别是AI Agent的演进有何看法?它更像是一种自动化策略,还是仍需大量人工监督管理?如何看待AI普及化与执行门槛降低带来的影响?随着模型规模和能力的增长,运行这些AI所需的算力资源将如何发展?是会持续增长,还是有更高效的解决方案?
Mustafa Suleyman 实录:情况并非“人们要么有求知欲,要么没有”。每个人都有想法和梦想,只是多数想法因难以付诸实践、不知从何开始而无疾而终。我所说的“将进入门槛降至零或极低水平”,是指数周前我听到一位用户在访谈中说:“我感觉思路一下子打开了。每当我卡壳,它总能帮我找到方向。” 这看似简单,却寓意深刻。就像项目中从零到一推进时,每一步都可能遇阻。这正好呼应了你关于成为“系统架构师”和管理 AI Agent 或人类团队的观点。卓越管理的艺术在于引入拥有专业知识、能帮你摆脱困境的人才。而现在,你能轻松摆脱困境,因为可以随时调用各种专家 AI Agent 和同伴,将你的愿景、想法或学习目标转化为现实。
所以在当前的 大语言模型 技术栈中,我看不到任何会拖慢这一进程或构成障碍的因素。我们正处在一个存在“技术潜力过剩”的奇特世界:已发明的能力超出了我们从现有模型中充分提取和应用的能力。即使现在停止所有模型开发,人们通过不断挖掘现有前沿模型的潜力,仍能催生新应用和能力。这正是通用技术的定义,如同电力一样。我们至今仍在挖掘电力的新潜能,因为人们在电力基础上不断创造出前所未有的、依赖电力的新事物。这就是通用技术带给我们的奇妙世界,它们将持续不断地释放价值。现在,轮到我们发挥创造力和聪明才智,去发掘这些应用场景了。
关于算力资源,有两个趋势在同时发生。一方面,模型在训练和推理过程中确实变得更加算力密集,这些 Scaling Law 趋势还会持续。另一方面,模型也同时在变得更小、更高效。这两者都带来了难以置信的回报,且相互促进、相辅相成,因为大模型可用来生成高质量数据以训练小模型。
所以神奇之处在于,未来你可能无需过多考虑计算本身,因为延迟问题基本已解决。比如,我们上周在 Windows 上发布的新功能,可以实时读取屏幕,在你遇到困难时与你对话——比如需要开蓝牙,或想编辑照片但没用过 Photoshop。它会高亮你该关注的屏幕区域,甚至将鼠标指针引导到那个位置。体验这些功能时,你根本不会去想算力消耗或延迟。你甚至不清楚它是在本地设备还是云端运行。随着时间推移,我们会越来越沉浸在这种实用性中,越来越少地担心计算是在云端还是本地。我相信未来会有更多模型被“蒸馏”压缩,部署到本地的手机、笔记本电脑等设备上。不过,从最前沿的模型到完全能在设备端本地运行,可能还需要大约两到三年的时间差。
关于本期访谈
访谈发布时间:2025年4月29日
原视频地址:https://youtu.be/K1UHxkNwSfI?si=nnETacywS7ZOACgh
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多