“芯”战争,人工智能芯片研发攻略

深度学习推动了人工智能新一轮发展热潮,对计算能力提出新需求。本文介绍了人工智能芯片的三个阶段:FPGA半定制、深度学习全定制和类脑计算芯片,强调了GPU、FPGA在深度学习中的作用,以及定制芯片如谷歌TPU和寒武纪的潜力。文章还探讨了类脑计算芯片的未来和市场前景,强调核心芯片在人工智能时代的战略重要性。
摘要由CSDN通过智能技术生成


来源:半导体行业观察、安信证券

概要:深度学习作为新一代计算模式,近年来,其所取得的前所未有的突破掀起了人工智能新一轮发展热潮。


在全球科技领域,人工智能无疑是最热门的领域。这种并不算新的应用场景将会带动新一轮的计算革命,这也将给人工智能芯片带来新的需求,给半导体领域带来新的机遇。人工智能芯片设计的目的是从加速深度学习算法到希望从底层结构模拟人脑来更好实现智能。


目前人工智能芯片涵盖了三个阶段:


(1)基于 FPGA 的半定制


(2)针对深度学习算法的全定制


(3)类脑计算芯片。


我们来看一下安信证券给我们科普的人工智能芯片研发攻略。



深度学习推动新一轮计算革命



深度学习作为新一代计算模式,近年来,其所取得的前所未有的突破掀起了人工智能新一轮发展热潮。深度学习本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。由于人类大脑的运行机制与计算机有着鲜明的不同,深度学习与传统计算模式有非常大的差别。


大脑运行机制和目前计算机的差别


深度学习的人工神经网络算法与传统计算模式不同,它能够从输入的大量数据中自发的总结出规律,从而举一反三,泛化至从未见过的案例中。因此,它不需要人为的提取所需解决问题的特征或者总结规律来进行编程。人工神经网络算法实际上是通过大量样本数据训练建立了输入数据和输出数据之间的映射关系,其最直接的应用是在分类识别方面。例如训练样本


的输入是语音数据,训练后的神经网络实现的功能就是语音识别,如果训练样本输入是人脸图像数据,训练后实现的功能就是人脸识别。


深度学习实际上是建立输入和输出数据之间的映射关系


传统计算机软件是程序员根据所需要实现的功能原理编程,输入至计算机运行即可,其计算过程主要体现在执行指令这个环节。而深度学习的人工神经网络算法包含了两个计算过程:


1、用已有的样本数据去训练人工神经网络;


2、用训练好的人工神经网络去运行其他数据。


这种差别提升了对训练数据量和并行计算能力的需求,降低了对人工理解功能原理的要求。


人工神经网络算法与传统计算模式的不同


根据上文的分析我们可以看到,深度学习与传统计算模式最大的区别就是不需要编程,但需要海量数据并行运算。传统处理器架构(包括 x86 和 ARM 等)往往需要数百甚至上千条指令才能完成一个神经元的处理,因此无法支撑深度学习的大 规模并行计算需求。


为什么传统计算架构无法支撑深度学习的大规模并行计算需求? 因为传统计算架构计算资源有限。传统计算架构一般由中央运算器(执行指令计算)、中央控制器(让指令有序执行)、内存(存储指令)、输入(输入编程指令)和输出(输出结果)五个部分构成,其中中央运算器和中央控制器集成一块芯片上构成了我们今天通常所讲的 CPU。


CPU 内部结构图(仅 ALU 为主要计算模块)


我们从 CPU 的内部结构可以看到:实质上仅单独的 ALU 模块(逻辑运算单元)是用来完成指令数据计算的,其他各个模块的存在都是为了保证指令能够一条接一条的有序执行。这种通用性结构对于传统的编程计算模式非常适合,同时可以通过提升 CPU 主频(提升单位时间执行指令速度)来提升计算速度。但对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,这种结构就显得非常笨拙。尤其是在目前功耗限制下无法通过提升CPU 主频来加快指令执行速度,这种矛盾愈发不可调和。


因此,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值