对话硅谷大佬马克·安德森:两家中国AI新秀如何改变游戏规则?

8ecb24de1bfd460a1afce4eddba74283.jpeg

来源:经纬创投

在近期的播客访谈中,美国知名风险投资家、Andreessen Horowitz联合创始人马克·安德森(Marc Andreessen)深入探讨了人工智能(AI)技术的最新发展及其对全球权力结构的深远影响。访谈聚焦于DeepSeek的开源AI技术、AI领域的竞争格局,以及中国在机器人技术等前沿领域的崛起。

安德森指出,DeepSeek的开源模式为全球AI发展带来了新的机遇,其开源的LLM(V3)和推理器(R1)不仅降低了AI的使用门槛,还推动了技术的普及化。他认为,这种开源模式不仅符合互联网的自由传统,还可能引发AI技术的广泛应用和成本的大幅降低。然而,这也对现有的专有模型公司如OpenAI和Anthropic提出了挑战。

此外,安德森还分析了AI技术对风险投资行业的影响,认为AI推理能力的提升将改变投资分析的方式,但早期风险投资的核心——对创业者和创新项目的深度洞察——仍不可替代。他还提到,全球权力结构正在发生变化,新的“反精英阶层”正在崛起,挑战传统精英的主导地位。

在技术前沿领域,安德森特别关注了中国机器人产业的发展,尤其是宇树科技(Unitree)在机器狗和人形机器人领域的突破。他认为,中国在供应链和制造能力上的优势,将使其在全球机器人市场中占据重要地位,Enjoy:

作者:MD

出品:明亮公司

近日,美国知名播客Invest Like the Best再次访谈了Andreessen Horowitz的联合创始人Marc Andreessen。

在访谈中,Marc和主播Patrick深入探讨了AI正在重塑技术和地缘政治的重大变革,并讨论了DeepSeek的开源人工智能以及其大国技术竞争中的意义,此外,他们还分享了对权力结构演变的看法,以及风险投资行业整体的转型。

「明亮公司」借助AI工具第一时间整理了访谈中的核心内容,以下为访谈内容(有删节)。

01

谈DeepSeek、AI赢家和输家

Patrick:Marc,我认为我们必须从最核心的问题开始。你能否谈谈你对DeepSeek的R1的看法?

Marc:这里面有很多维度。(我认为)美国仍然是人工智能领域公认的科学和技术领导者。DeepSeek中的大多数想法都源自过去20年,甚至令人惊讶的是80年前在美国或欧洲进行的工作。神经网络的最初研究早在20世纪40年代的美国和欧洲研究型大学中就已展开。

因此,从知识发展的角度来说,美国仍然遥遥领先。

但DeepSeek对这些知识完成了非常出色的运用。他们还做了一件了不起的事情,那就是以开源的形式将其提供给全世界。这实际上相当令人惊叹,因为这种现象发生了一种逆转。你有像OpenAI这样的美国公司,它们基本上完全封闭。

埃隆·马斯克对OpenAI的部分诉讼内容是要求他们将公司名称从OpenAI改为Closed AI。OpenAI最初的设想是所有内容都会开源,但如今一切都已封闭。其他大型AI实验室,如Anthropic,也完全封闭。事实上,它们甚至已经停止发布研究论文,将所有东西都视为专有财产。

而DeepSeek团队出于他们自己的原因,实际上实现了真正开源的承诺。他们发布了他们的LLM(称为V3)和他们的推理器(称为R1)的代码,并且发布了详细的技术论文,说明了他们是如何构建它的,这基本上为任何想要进行类似工作的其他人提供了路线图。

所以它已经公开了。外界有一种虚假的论调,认为如果你使用DeepSeek,你就会把所有数据给中国人。如果你在DeepSeek网站上使用该服务,这是真的。但你可以下载代码,并自行运行它。但我举个例子:Perplexity是一家美国公司,你可以在Perplexity上使用DeepSeek R1,完全托管在美国。微软和亚马逊现在都有DeepSeek的云版本,你可以在他们的云平台上运行它,显然这两家公司都是美国公司,使用的是美国的数据中心。

这非常重要。你现在可以下载这个系统,并且实际上可以在家里或公司里价值6000美元的硬件上运行它。它的能力与OpenAI和Anthropic等公司的最前沿系统相当。

这些公司投入了大量资金来构建他们的系统。如今,你可以用6000美元买到它,并且拥有完全的控制权。如果你自己运行它,你拥有完全的控制权。你可以完全透明地了解它在做什么,你可以修改它,你可以对它进行各种操作。

它还有一个非常出色的特性,称为蒸馏。你可以将需要6000美元硬件的大模型进行压缩,创建更小版本的模型。网上已经有人创建了更小版本的模型,并且进行了优化,以便你可以在MacBook或iPhone上运行它们。这些版本虽然没有完整版本那么智能,但仍然相当聪明。你可以创建定制的、针对特定领域的、经过蒸馏的版本,它们在特定领域表现出色。

这是在使大模型推理以及R1模型在编程、科学方面推理变得更加普及方面的一个巨大进步。六个月前,这些还非常深奥、极其昂贵且专有。如今,它变得对每个人来说都是免费且永远可用的。

每一个大型科技公司、互联网公司、每一个初创公司,我们本周就有几十家甚至几百家初创公司,要么正在基于DeepSeek进行重建,要么将其整合到他们的产品中,要么研究他们使用的技术,并用它来改进现有的AI系统。

Meta团队的马克·扎克伯格最近谈到,Meta团队正在拆解DeepSeek,完全合法地借鉴这些想法,因为它是开源的,并确保下一个版本的Llama在推理能力上至少与DeepSeek相当,或者更好。这确实推动了世界的发展。

我们可以从中学到的两个主要观点是:AI将无处不在。有很多AI风控人士、安全人士、监管者、官员、政府、欧盟、英国人等等……所有这些人都希望限制和控制AI,而这基本上保证了这一切都不会发生,我认为这很好。它非常符合互联网的自由传统。然后,这实现了推理能力的30倍成本降低。

也许最后要指出的是,这表明推理将奏效。推理将在人类活动的任何领域奏效,只要你可以生成答案,这些答案可以在事后由技术专家检查是否正确。

我们将拥有能够进行人类和超人类水平推理的AI,这将在真正重要的领域发挥作用:编码、数学、物理、化学、生物学、经济学、金融、法律和医学。

这基本上保证了五年内地球上每一个人都会拥有一位超人类水平的AI律师、AI医生,他们随时待命,这只是手机上的一个标准功能。这将使世界变得更加美好、健康和奇妙。

Patrick:但这也是这是最不稳定的,两个月内模型就会过时。每个技术层级都在发生大量创新。但仅从当下这个时点来看,进入这个新范式,如果你正在撰写关于所有利益相关者的赢家和输家的专栏,无论是新的应用开发者、现有的软件开发者、像英伟达这样的基础设施提供商,开源与闭源模型公司。你认为谁是R1发布后的赢家和输家?

Marc:如果在今天拍一张“快照”,那么从零和游戏的角度来看,在一个时间点上的赢家和输家来说,赢家是所有的用户,所有的消费者,每一个个人,以及每一个使用AI的企业。

有一些初创公司,比如做AI法律服务的公司,上周他们使用AI的成本还是现在的30倍。

例如,对于一家正在构建AI律师的公司来说,如果其关键输入的成本下降了30倍,这就像是开车时汽油成本下降了30倍。突然之间,你可以用同样的一美元开30倍远的距离,或者你可以利用额外的支出能力去购买更多的东西。所有这些公司要么将极大地扩展它们在所有这些领域使用AI的能力,要么它们将能够以更便宜或免费的方式提供服务。所以对于用户、世界来说,这是一个在固定规模的盘子基础上的绝佳结果。

输家是那些拥有专有模型的公司,比如OpenAI、Anthropic等等。你会注意到,OpenAI和Anthropic在过去一周都发出了相当强硬但像是被挑衅后的信息,解释为什么这并不是他们的终结。在商业和政治中有一句老话,当你在解释的时候,你就输了。

然后另一个是英伟达公司。关于这一点有很多评论,但英伟达制造的是人们使用的标准AI芯片。也有一些其他选择,但英伟达是大多数人使用的。他们芯片的利润率高达90%,公司的股票价格也反映了这一点。(英伟达)是世界上最有价值的公司之一。DeepSeek团队在他们的论文中所做的其中一件事是,他们想出了如何使用更便宜的芯片,实际上仍然使用英伟达的芯片,但他们使用得更加高效。

30倍的成本降低的一部分是你只需要更少的芯片。顺便说一下,中国正在构建自己的芯片供应链,一些公司也开始使用中国衍生的芯片,这当然对英伟达来说是一个更根本的威胁。所以这是在某个时间点的快照。但问题是,你的问题暗示了另一种看待它的方式,那就是随着时间的推移,随着时间的推移,你想要看到的是弹性效应。萨蒂亚·纳德拉用了这个叫做杰文斯悖论的短语。

想象一下汽油。如果汽油的价格大幅下降,那么突然之间人们会开更多的车。这在交通规划中经常出现。所以你会有一个像奥斯汀这样的城市,它交通拥堵,有人会突发奇想,在现有高速公路旁边再建一条新高速公路。而在短短两年内,新高速公路也会被堵满,也许甚至更难从一个地方到达另一个地方。原因在于关键投入品价格的降低可以诱导需求。

如果AI突然变得便宜30倍,人们可能会使用它30倍,或者顺便说一下,他们可能会使用它100倍甚至1000倍。这种经济术语叫做弹性。

所以价格下降等于需求的爆炸性增长。我认为这里有一个非常合理的场景,那就是在另一边,随着使用量的爆炸性增长,DeepSeek会做得很好。顺便说一下,OpenAI、Anthropic也会做得很好,英伟达也会做得很好,中国的芯片制造商也会做得很好。

然后你会看到一种潮汐效应,整个行业会爆炸性增长。我们真的才刚刚开始人们弄清楚如何使用这些技术。推理只是在过去四个月才开始奏效。OpenAI几个月前才发布了他们的o1推理模型。这就像把火种从山上取下来,然后把它交给全人类。而大多数人类还没有使用火,但他们会用的。

然后,坦率地说,这也是一个旧观念,即创造性,也就是说,好吧,如果你是OpenAI或者其他类似的公司,你上周所做的已经不够好了。但话说回来,这就是世界的方式。你必须变得更好。这些事情都是竞赛。你必须进化。所以这也是一种非常强大的催化剂,促使许多现有公司真正提高他们的水平,变得更加激进。

……

Patrick:……,如果一家中国公司使用在美国开发的模型,这些模型投入了大量资金,然后导致了这种为世界带来丰富的技术,这是一件很难理解的事情。我很想听听你从这两个角度的反应。

Marc:是的,所以这里有一些真正的问题。这种论点存在一种讽刺意味,你确实会听到这种论点。当然,讽刺之处在于OpenAI并没有发明Transformer。大型语言模型的核心算法叫做Transformer。

它不是在OpenAI发明的,而是在谷歌发明的。谷歌发明了它,并且发表了相关论文,然后顺便说一下,他们没有将其产品化。他们继续对其进行研究,但没有将其产品化,因为出于“安全”考虑,他们认为这可能是不安全的。因此,他们让它在货架上放了五年,然后OpenAI的团队明白了这一点,将其捡起来并继续推进。

Anthropic是OpenAI的分支。Anthropic也没有发明Transformer。因此,无论是这两家公司,还是每一个其他正在研究大型语言模型的美国实验室,每一个其他开源项目,都是建立在他们自己没有创造和开发的东西之上。

顺便说一下,谷歌在2017年发明了Transformer,但Transformer本身是基于神经网络的概念。神经网络的想法可以追溯到1943年。所以,82年前实际上是原始的神经网络论文发表的时间,而Transformer是在70年的研究和发展基础上建立起来的,其中大部分是由联邦政府和欧洲政府在研究型大学中资助的。

因此,这是一个非常长的知识思想和发展的谱系,进入所有这些系统的大部分想法都不是目前构建这些系统的公司所开发的。没有一家公司坐在这里,包括我们自己的公司,没有任何特殊的道德主张,认为我们是从头开始构建的,我们应该完全控制。这根本不是事实。

所以,我会说,像这样的论点是出于当下的挫败感。顺便说一下,这些论点也是毫无意义的,因为中国已经这么做了,它已经出来了,事情已经发生了。现在有一个关于版权的争论。如果你和这个领域的专家交谈,很多人一直在试图理解为什么DeepSeek如此出色。其中一个理论,这是一个未经证实的理论,但专家们相信的一个理论是中国公司可能使用了美国公司没有使用的数据进行训练。

特别令人惊讶的是,DeepSeek在创意写作方面非常出色。DeepSeek可能是目前世界上英语创意写作方面最好的AI。这有点奇怪,因为中国的官方语言是中文。虽然有一些非常优秀的中国英语小说家,但一般来说,你可能会认为最好的创意写作应该来自西方。而DeepSeek目前可能是最好的,这令人震惊。

因此,其中一个理论是DeepSeek可能进行了训练。例如,有一些网站的名字叫Libgen,这些基本上是巨大的互联网存储库,里面全是盗版书。我自己当然不会使用Libgen,但我有一个朋友经常使用它。它就像Kindle商店的超集。它有每本数字书,以PDF格式存在,你可以免费下载。它就像电影版的海盗湾。

美国实验室可能不会觉得自己可以简单地从Libgen下载所有书籍并进行训练,但也许中国实验室觉得自己可以。因此,可能存在这种差异优势。话虽如此,这里还有一个悬而未决的版权之争。人们需要小心对待这个问题,因为这里有一个悬而未决的版权之争,一些出版公司基本上希望阻止像OpenAI、Anthropic和DeepSeek这样的生成式AI公司能够使用他们的内容。

有一个论点说,这些材料是受版权保护的,不能随意使用。还有另一个论点,基本上说AI对书籍进行训练,你并没有复制书籍,你是在阅读书籍。AI阅读书籍是合法的。

你和我被允许阅读书籍,顺便说一下。我们可以从图书馆借阅书籍。我们可以捡起朋友的书。这些行为都是合法的。我们被允许阅读书籍,我们被允许从书籍中学习,然后我们可以继续我们的日常生活,谈论我们在书中学到的想法。另一个论点是,训练AI更像是人类阅读书籍,而不是偷窃。

然后还有实际现实,即如果……他们的AI可以接受所有书籍的训练,而如果美国公司最终被法律禁止对书籍进行训练,那么美国可能会在AI领域输掉比赛。

从实际角度来看,这可能是一个致命一击,就像他们赢了而我们输了。可能有一些整个争论的纠结。DeepSeek没有透露他们训练所使用的数据。因此,当你下载DeepSeek时,你得不到训练数据,你得到的是所谓的权重。因此,你得到的是经过训练材料训练后的神经网络。但从那里面很难甚至不可能去查看并推导出训练数据。

顺便说一下,Anthropic和OpenAI也没有透露他们训练所使用的数据。然后在该领域存在激烈的猜测,关于OpenAI训练数据中有什么和没有什么。他们认为这是一个商业秘密。他们不会公开这些内容。因此,中国DeepSeek可能与这些公司不同,也可能没有。他们可能在训练方法上与中国公司不同。我们不知道。

我们不知道OpenAI和Anthropic的算法到底是什么,因为它们没有开源。我们不知道它们比公开的DeepSeek算法好多少或差多少。

02

谈闭源与开源

Patrick:你认为那些进入竞争的闭源模型,像OpenAI、Anthropic,最终会变得更像苹果与谷歌的安卓?

Marc:我支持竞争的最大化。顺便说一下,这符合我作为风险投资人的身份。所以,如果你是一个公司创始人,如果我经营一家AI公司,我需要有一个非常具体的策略,它有优点和缺点,需要权衡取舍。

作为一个风险投资人,我不需要这样做。我可以进行多种相互矛盾的押注。这就是彼得·蒂尔所说的确定性乐观与非确定性乐观。公司创始人、CEO必须是确定性乐观主义者。他们必须有一个计划,并且必须做出艰难的权衡,以实现该计划。风险投资人是非确定性乐观主义者。我们可以资助一百家拥有100种不同计划、相互矛盾假设的公司。

我工作的本质是我不需要做出你刚才描述的那种选择。然后,这让我很容易提出一个哲学论点,我个人也真诚地同意,即我支持最大程度的竞争。所以,再深入一层,这意味着我支持自由市场、最大程度的竞争和最大程度的自由。

本质上,如果能够有尽可能多的聪明人想出尽可能多的不同方法,并在自由市场中相互竞争,看看会发生什么。具体到AI,这意味着我支持大型实验室尽可能快地发展。

我100%支持OpenAI和Anthropic做他们想做的任何事情,推出他们想推出的任何产品,尽可能努力发展。只要他们没有从政府那里获得优先的政策待遇、补贴或支持,他们应该能够作为公司做他们想做的任何事情。

当然,我也支持初创公司。我们当然在积极资助各种规模和类型的AI初创公司。所以,我希望他们能够发展,然后我希望开源能够发展,部分原因是,我认为如果东西出现在开源中,即使这意味着有些商业模式的公司无法运作,对世界和整个行业的益处如此之大,我们会找到其他赚钱的方法。AI将变得更加普遍、更便宜、更容易获得。我认为这将是一个很好的结果。

然后,开源的另一个非常关键的原因是,没有开源,一切都变成了黑盒子。没有开源,一切都变成了被少数几家公司拥有和控制的黑盒子,这些公司最终可能会与政府勾结,我们可以就此进行讨论。但你需要开源,以便能够查看盒子内部发生了什么。

顺便说一下,你还需要开源进行学术研究,因此你需要开源来进行教学。因此,开源之前的问题是,回到两年前,当时还没有基本的开源LLM,Meta发布了Llama,然后是法国的Mistral,现在是DeepSeek。

但在这些开源模型出现之前,大学系统中正在经历一场危机,即大学研究人员在斯坦福、麻省理工和伯克利等地方没有足够的资金去购买价值十亿美元的英伟达芯片,以便真正参与AI领域的竞争。

因此,如果你在两年前与计算机科学教授交谈,他们会非常担心。第一个担忧是我的大学没有足够的资金来参与AI领域的竞争并保持相关性。然后另一个担忧是所有大学加在一起也没有足够的资金来参与竞争,因为没有人能够跟上这些大型公司的筹资能力。

开源让大学重新回到竞争中。这意味着如果我是斯坦福、麻省理工、伯克利或任何州立学校的教授,无论华盛顿大学还是其他地方,我现在可以使用Llama代码、Mistral代码或DeepSeek代码进行教学。我可以进行研究,我可以实际取得突破。我可以发表我的研究成果,让人们真正了解发生了什么。

然后,每一个新一代的孩子来到大学,参加计算机科学课程,他们将能够学习如何做到这一点,而如果这是一个黑盒子,他们就无法做到。我们需要开源,就像我们需要言论自由、学术自由和研究自由一样。

因此,我的模式基本上是,你让大公司、小公司和开源相互竞争。这就是计算机行业发生的事情。这效果很好。这就是互联网行业发生的事情。效果很好。我相信这将在AI领域发生,我认为这将效果很好。

Patrick:是否有一个极限,即想要最大程度的进化速度和最大程度的竞争?也许有。如果我说,我们知道最好的东西是中国做出来的,……,是否有一种情况是你说,是的,我想要最大程度的进化和竞争,但国家利益在某种程度上超越了对最大进化速度和发展的渴望?

Marc:这个论点是一个非常真实的论点。它在AI领域被频繁地提出。事实上,正如我们今天坐在这里时,有两件事。首先,目前实际上存在对西方公司和美国公司向中国出售尖端AI芯片的限制。例如,英伟达今天实际上不能合法地将其尖端AI芯片出售给中国。我们生活在一个已经做出了这种决定并实施了这种政策的世界中。

这是一个非常活跃的争论。随着DeepSeek事件的发生,华盛顿特区正在进行另一轮这样的争论。

然后基本上,当你陷入政策争论时,你会遇到一种经典的情况,即你有一个理性的争论版本,即从理论角度出发,什么是符合国家利益的。

然后还有第三个因素,我们总是需要讨论的,即特别是大型公司的腐败影响。如果你是一个大型公司,你看到中国公司正在发生的变化(更有竞争力)、开源发生的事情的威胁,当然你会试图利用美国政府来保护自己。也许这符合国家利益,也许不符合。但你会肯定去推动这一点,无论它是否符合国家利益。这就是使这场争论变得复杂的原因。

你不能将尖端AI芯片出售给中国。这肯定在某些方面阻碍了他们。有一些事情他们将无法做到。也许这是好事,因为你已经决定这是符合国家利益的。但让我们来看看由此产生的三个其他有趣的后果。

所以后果之一是给中国公司提供了巨大的动力,去设计如何在更便宜的芯片上实现事情。这是DeepSeek突破的一个重要部分,即他们想出了如何使用合法合规的更便宜的芯片来做到美国公司用更大芯片才能做到的事情。这也是它如此便宜的一个原因。其中一个原因是你可以在价值6000美元的硬件上运行它,是因为他们投入了大量的时间和精力来优化代码,使其能够在不受制裁的更便宜的芯片上高效运行。你迫使了一种进化反应。

所以这是第一个反应,也许这已经在某种程度上适得其反了。第二个后果是你激励中国国有和私营部门去发展一个平行的芯片产业。所以如果他们知道他们无法获得美国芯片,那么他们就会去发展。他们现在正在这样做。他们有一个全国性的计划,去建立自己的芯片产业,这样他们就不依赖美国芯片了。

所以从反事实的角度来看,也许他们会购买美国芯片。现在他们将去弄清楚如何自己制造。也许五年后他们能够做到这一点。但一旦他们达到一个能够自己制造的位置,那么我们将拥有一个我们在全球市场上不会拥有的直接竞争对手,如果我们只是卖给他们芯片的话。而且顺便说一下,到了那个时候,我们对他们的芯片没有任何控制权。他们可以完全控制。他们可以在低于成本的价格出售,他们可以做任何他们想做的事情。

……

03

AI推理能力如何改变VC和投资行业

Patrick:你认为所有这些将如何影响资本配置?我最感兴趣的是,也许在五年后,你的公司,安德森·霍洛维茨(Andreessen Horowitz,A16Z)将如何受到影响。如果我认为投资公司是一些能够筹集资本、进行出色分析工作以及能够判断人的能力的组合,尤其是处于早期阶段,你认为这种功能将如何因“o7”(AI推理能力)的出现而改变?

Marc:我希望分析部分能够发生巨大的变化。我们假设世界上最好的投资公司将会非常擅长利用这种技术来进行他们所做的分析工作。

话虽如此,存在一种“鞋匠的儿子没有鞋”的说法,也许那些在AI领域最激进地进行投资的风险投资公司可能是那些在实际应用方面不够激进的公司之一。但我们公司内部正在进行多项努力,我对此感到非常兴奋。但我们这样的公司需要跟上形势,所以我们必须真正做到这一点。

是不是有些工作已经在行业内部展开?可能还没有。可能还不够。话虽如此,对于后期投资或公开市场投资来说,很多与我们交谈的人有一个非常分析性的视角。甚至还有伟大的投资者,我认为是沃伦·巴菲特。我不知道这是否属实,但我一直听说沃伦从不与首席执行官会面。

Patrick:他想要“火腿三明治公司”。

Marc:是的,是的,他希望公司像火腿三明治一样简单。而且我认为他有点担心自己会被一个好故事所吸引。要知道,很多首席执行官都是非常有魅力的人。他们总是被描述为“头发很好,牙齿很白,鞋子擦得锃亮,西装笔挺”。他们在销售方面非常出色。你知道,首席执行官们擅长的事情之一就是销售,尤其是销售自己的股票。

所以如果你是巴菲特,你坐在奥马哈,你所做的是阅读年度报告。公司会在年度报告中列出所有内容,并且受到联邦法律的约束,确保其内容真实。所以这就是你的分析方式。那么,o1、o3、o7或R4等推理模型是否比大多数投资者手工分析年度报告做得更好呢?可能是的。

正如你所知,投资是一场军备竞赛,就像其他一切事物一样。所以如果它对一个人有效,它将对每个人有效。它将在一段时间内成为套利机会,然后它将关闭并成为标准。因此,我预计投资管理行业将以这种方式采用这种技术。这将成为一种标准的运营方式。

我认为对于早期风险投资来说情况有点不同。我接下来要说的可能只是我个人的一厢情愿。我可能是1948年在偏远岛屿上的最后一个日本士兵,说出我接下来要说的话。我要冒险一试。但我要说的是,看,在早期阶段,我们所做的很多事情在最初的五年里实际上是真正深入地评估个人,然后与这些人进行非常深入的合作。

这也是为什么风险投资很难规模化,尤其是(跨)地理上的规模化。地理规模实验往往行不通。原因就在于你最终需要与这些人面对面相处很长时间,不仅在评估过程中是这样,在建设过程中也是如此。因为在最初的五年里,这些公司通常还没有进入自动驾驶状态。

你实际上需要与他们密切合作,以确保他们能够实现成功所需的一切。这其中存在着非常深入的人际关系、对话、互动、指导,顺便说一下,我们从他们那里学习,他们也从我们这里学习。这是一种双向的交流。

我们并没有所有的答案,但我们有一个视角,因为我们看到了更广阔的全景,而他们则更专注于具体的细节。因此,存在着大量的双向互动。泰勒·考恩(Tyler Cowen)谈到了这一点,我认为他称之为“项目挑选”。

当然,“人才挖掘”是另一个版本,即基本上,如果你回顾人类历史上的任何新领域,你几乎总能找到这种现象,即有一些具有独特个性的人试图做一些新的事情,然后有一些专业的支持层,这些人资助和支持他们。在音乐产业中,大卫·格芬(David Geffen)发现了所有早期的民谣艺术家,并将他们打造成摇滚明星。或者在电影产业中,是大卫·O·塞尔兹尼克(David O. Selznick)发现了早期的电影演员,并将他们打造成电影明星。或者是在500年前缅因州的一个咖啡馆、酒馆里,有人在讨论哪位捕鲸船长能够去捕获鲸鱼。

你知道,这是伊莎贝拉女王在王宫中听取哥伦布的提议,并说:“听起来有道理。为什么不呢?”这种在时间中发展起来的炼金术,这种在做新事物的人和那些支持、资助这些人的专业支持层之间发展起来的炼金术,已经存在了几百年,甚至几千年。

你可能在几千年前就看到了部落首领,他们围坐在火堆旁,年轻的战士走过来,说:“我想带领一支狩猎队去那边的地区,看看那边是否有更好的猎物。”而首领坐在火堆旁,试图决定是否同意。所以这是一种非常人性化的互动。我的猜测是这种互动会继续下去。当然,话说回来,如果我遇到了一个比我更擅长做这件事的算法,我会立刻退休。我们拭目以待。

Patrick:你正在建立这个领域中最大的公司之一。如何调整公司的发展战略以应对这项新技术?无论是实际操作还是战略方向,你是否做出了调整?你如何调整公司的发展方向以应对这项新技术?

Marc:经营风险投资公司的一个重要部分,在我们看来,是存在一组你必须拥有的价值观和行为,我们称之为永恒不变的。例如,对企业家的尊重。你需要对企业家以及他们所经历的旅程表现出极大的尊重。你需要深入了解他们所做的事情。你不能走马观花。

你要建立深厚的关系。你要与这些人长期合作,顺便说一下,这些公司需要很长时间才能建立起来。我们不相信一夜成功。大多数伟大的公司是在10年、20年、30年的时间跨度内建立起来的。英伟达就是一个很好的例子。英伟达即将迎来它的40周年,我想英伟达最初的风投之一,实际上至今仍在董事会。这是一个很好的长期建设的例子。

所以,有一套核心的信念、观点和行为是我们不会改变的,这些与我们刚才提到的有关。另一个是面对面交流的事情。你知道,这些事情不能远程完成,这是其一。但另一方面,你需要紧跟时代,因为技术变化如此之快,商业模式变化如此之快,竞争动态变化如此之快。

如果有什么不同的话,环境变得更加复杂了,因为你现在有很多国家,现在还有所有这些政治问题,这也使得事情变得更加复杂。我们过去从未真正担心过政治体系会对我们的投资施加压力,直到大约八年前。然后大约五年前,这种压力真正加剧了。但在我们公司成立的前十年,以及风险投资的前60年,这从来不是一件大事,但现在它却是。

因此,我们需要适应。我们需要参与政治,这在以前我们是没有做到的。现在我们需要适应,我们需要弄清楚也许AI公司会非常根本性地不同。也许它们的组织架构会完全不同。或者正如你所说,也许软件公司的运作方式会完全不同。

我们经常问自己的一个问题,例如,一个真正充分利用AI的公司的组织架构是什么样的?它是否与现有的组织架构相似,或者它实际上会非常不同?对此没有单一的答案,但我们正在认真思考这个问题。

所以,我们每天所做的一件微妙的平衡工作是,尝试弄清楚什么是永恒不变的,什么是紧跟时代的。这在概念上是我思考公司的一个重要部分,即我们需要在这两者之间导航,并确保我们能够区分它们。

Patrick:你的公司现已经非常大了,它在某种程度上类似于KKR或黑石集团这样的公司。你和本(Ben Horowitz)作为创始人,都是经验丰富的创始人,当你们创立这家公司的时候。与黑石类似,苏世民(Schwarzman)在创立黑石之前从未真正做过投资。看看它现在的发展。

似乎这种由创始人主导的方式来建立资产管理投资公司,它们最终会发展成真正庞大且无处不在的平台。你有垂直业务,涵盖了大多数令人兴奋的技术前沿领域。你认为这种观点是否有一定道理?最好的资本配置平台是否将更多地由创始人而非投资者创立?

Marc:是的,所以有几点。首先,我认为这个观察是有一定道理的。在行业内,人们通常会这样谈论,即很多投资运作通常被称为合伙制。很多风险投资公司就是以这种方式运作的。历史上,它就是一个小团队的人坐在一个房间里,互相交流想法,然后进行投资。顺便说一下,他们没有资产负债表。这是一个私人合伙制。他们以补偿的形式在每年年底支付资金。这就是传统风险投资模式。

一个传统的风险投资模式,有六个普通合伙人(GPs)坐在桌子周围进行这种操作。他们有自己的助手,还有几个助理。但重点是,它完全基于人。顺便说一下,实际上你会发现,在大多数情况下,人们彼此之间并不太喜欢对方。

《广告狂人》(Mad Men)很好地展现了这一点。记得在《广告狂人》中,在第三季或第四季,成员们离开去创办自己的公司,他们实际上彼此之间并不喜欢对方。他们知道他们需要聚集在一起创办一家公司。这就是很多公司运作的方式。所以,它是一个私人合伙制,它就是它所代表的那样。

但随后你看到的是,这些公司很难持续下去。它们没有品牌价值,它们没有潜在的企业价值,它们不是一个企业。你看到的这种模式的公司是,当最初的合伙人准备退休或做其他事情时,他们将其交给下一代。大多数时候,下一代无法继续维持下去。即使他们能够维持下去,也没有潜在的资产价值。下一代将不得不将其交给第三代。它可能在第三代就会失败,然后它最终会出现在维基百科上。它会是这样的,“是的,这家公司曾经存在过,然后它消失了,其他公司取代了它,就像夜间的船只一样擦肩而过。”

所以这是传统的运作方式。顺便说一下,如果你接受的是传统的投资培训,你接受的是投资部分的培训,但你从未接受过如何建立企业的培训。所以,这不是你的自然强项,你没有这种技能或经验,所以你不会去做。许多投资者作为投资者以这种方式运作了很长时间,赚了很多钱。所以,它可以很好地运作。

另一种方式是建立一个公司,建立一个企业,建立一些具有持久品牌价值的东西。你提到了像黑石和KKR这样的公司,这些巨大的上市公司。阿波罗(Apollo)也是如此,这些巨大的公司——你可能知道,最初的银行实际上都是私人合伙制。100年前的高盛和摩根大通更像是今天的小型风险投资公司,而不是它们现在所呈现的样子。但随后,它们的领导者随着时间的推移将它们转变为这些巨大的企业。它们也是大型上市公司。

所以,这是另一种方式,是建立一个特许经营权。现在,要做到这一点,你需要一个理论,即为什么一个特许经营权应该存在。你需要一个概念性的理论,即为什么这样做是有意义的。然后,是的,你需要商业技能。然后,到了那个时候,你正在经营一个企业,它就像经营任何其他企业一样,也就是说,好,我有一个公司。它有一个运营模式,它有一个运营节奏,它有管理能力,它有员工,它有多个层级,它有内部的专业分工和专业化。

然后你开始考虑扩展,然后随着时间的推移,你开始考虑潜在的资产价值,即这个东西的价值不仅仅在于当下在那里的人。它不是像我们一样,急切地想要分发利润,或者别的什么。但我们在尝试做的一件大事是建立一些具有这种持久性的东西。

顺便说一下,我们并不是急于上市,或者别的什么,但我们在尝试做的一件大事是建立一些具有这种持久性的东西。

Patrick:你希望公司未来10年有哪些新的不同之处,目前还不存在?有没有一些你希望公司永远不要像传统大型资产管理公司那样演变的不可妥协的方式?

Marc:我们在投资对象、公司所做的事情、模型以及创始人的背景方面迅速演变,这些内容一直在变化。举个例子,60年来风险投资界一直有一个共识,那就是你永远不会支持研究人员创办公司进行研究。他只会进行研究,耗尽资金,最后你一无所获。

然而,如今许多顶尖的AI公司正是由研究人员创立的。这是一个例子,说明有些所谓的“永恒不变”的价值观需要根据时代的变化进行调整。我们需要对这些变化保持高度的灵活性。因此,随着这些变化,公司成功所需的帮助和支持也会随之改变。

关于我们公司最显著的变化之一,我之前也提到过,那就是我们现在拥有一个庞大且日益复杂的政治运作部门。四年前,我们在政治领域还是一片空白。而如今,这已经成为我们业务的一个重要组成部分,是我们之前从未预料到的。

我确信,再过10年,我们不仅会投资于目前无法想象的领域,还会拥有目前无法想象的运营模式。因此,我们对这些方面的变化持完全开放的态度。然而,有一些核心价值观我希望在未来10年保持不变,因为这些价值观经过了深思熟虑,是我们公司的基石。

但我一直向我们的团队成员和有限合伙人强调的是,我们并不是为了追求规模而规模。许多投资公司达到一定规模后,会优先考虑扩大资产管理规模,从数十亿到数千亿甚至数万亿美元。这种做法往往会被批评为更注重收取管理费,而不是在投资上取得优异表现。这并不是我们的目标。

我们扩大规模的唯一原因是,为了支持我们希望帮助创始人建立的公司。当我们扩大规模时,是因为我们相信这有助于我们实现这一目标。

然而,我必须强调,我们公司的核心始终是早期风险投资。无论我们变得多大,即使我们设立了增长型基金,能够开出更大的支票——一些AI公司确实需要大量资金。我们并不是从一开始就设立增长型基金,而是随着市场需求和公司发展逐步建立的。

但核心业务始终是早期风险投资。这可能会让人感到困惑,因为从外部来看,我们管理着大量的资金。为什么作为一家早期初创公司的创始人,我会相信你们会愿意花时间在我身上?因为你们Andreessen Horowitz在后期投资中投入了数亿美元,而你们在我A轮融资中只投入了500万美元。你们还会花时间关注我吗?

原因在于,我们公司的核心业务始终是早期风险投资。从财务角度来看,早期投资的回报机会与后期公司的回报机会是相当的,这是初创公司的特点。但更重要的是,我们所有的知识、关系网络以及使我们公司与众不同的东西,都来自于我们在早期阶段的深厚洞察力和人脉资源。

所以,我总是告诉人们,如果形势所迫,世界陷入困境,我们必须做出牺牲,那么早期风险投资业务永远不会被牺牲。这将始终是公司的核心。这也是为什么我会花很多时间与早期创始人合作。一方面,这非常有趣;另一方面,这也是学习最多的地方。

04

全球权力结构的转变:精英与反精英

Patrick:如果我们考虑全球权力结构的变化,……,你最关注哪些权力中心正在发生变化,无论是正在获得权力还是正在失去权力?

Marc:《马基雅维利主义者》(The Machiavellians)。我敢肯定你可能已经有十几个人在你的节目中推荐过这本书了。这是20世纪最伟大的书籍之一。它阐述了关于政治权力、社会和文化权力的理论。这本书中有一个我目前到处都能看到的关键观点,即精英和反精英的概念。

这个观点是这样的:基本上,民主本身是一个神话。你永远不会有一个完全民主的社会。顺便说一下,美国当然不是一个民主国家,它是一个共和国。但即使是那些运作良好的“民主”制度,它们也倾向于具有共和制的性质,小写的“r”共和制。它们倾向于有一个议会,或者有众议院和参议院,或者有某种代表机构。它们倾向于有一个代表性的机构。

原因在于这本书中描述的一种现象,称为“寡头铁律”,基本上是这样的:直接民主的问题在于,大众无法组织起来。你无法真正让3.5亿人组织起来做任何事情。人数太多了。

所以,基本上在人类历史上的每一个政治体系中,你都有一个小型的、有组织的精英阶层在治理一个庞大的、无组织的大众阶层。你从最初的狩猎采集部落开始,一直到美国和现代时代的每一个其他政治体系,无论是希腊人还是罗马人,还是历史上的每一个帝国,每一个国家。

我们的社会也不例外。我们有一个庞大的、无组织的大众阶层。我们有一个非常小的、有组织的精英阶层。美国……建立了一个体系,我们有两个精英阶层。我们有民主党的精英阶层和共和党的精英阶层。顺便说一下,这两个精英阶层之间有很大的重叠部分,有些人实际上称其为“单一政党”。也许这些精英阶层之间有更多的共同点,而不是他们与大众之间的共同点。

长期以来,我们有一个共和党精英阶层,其政策最终以布什家族为代表。我们有一个民主党精英阶层,其政策最终以奥巴马为代表。在过去十年中,基本上在美国的两边都发生了一场精英阶层内部的叛乱。这实际上是《马基雅维利主义者》中的关键观点,即变化通常不是大众直接对抗精英阶层。发生的事情是一个新的反精英阶层的出现。

你会有一个新的反精英阶层出现,试图取代当前的精英阶层。我的对当前事务的解读是,一般来说,目前世界上运行世界的精英阶层被发现做得不好。我们可以稍后讨论原因。但一般来说,如果你看看(西方)政治领导人的支持率、机构的支持率,所有这些都在下降。在世界上到处都在发生的事情是,如果你是一个现任的机构,如果你是一个现任的报纸,如果你是一个现任的电视网,如果你是一个现任的大学,如果你是一个现任的政府,一般来说,你的民意支持率是一个灾难。这就是人们基本上在说,当权的精英阶层正在辜负我们。

然后出现了这些反精英阶层,他们说:“哦,我知道我有一个更好的方式来代表大众,我有一个更好的方式来接管。”我的新反精英运动应该取代当前的精英运动,比如民主党的情况。这在2016年是伯尼·桑德斯(Bernie Sanders),这是奥卡西奥-科尔特斯(AOC)和整个进步派浪潮。而在共和党方面,这显然是特朗普(Trump)和他的“让美国再次伟大”(MAGA)运动以及它所代表的一切。

但顺便说一下,这种动态在英国也在发生。保守党已经崩溃,现在你有了这个改革党,有奈杰尔·法拉奇(Nigel Farage),它非常具有威胁性。你有杰里米·科尔宾(Jeremy Corbyn),他也是一个来自左翼的反精英阶层。

在德国也是如此。实际上,就在本周,在德国发生了一件非常戏剧性的事情,即所谓的“极右翼”政党AfD正在迅速崛起。有一位名叫爱丽丝·魏德尔(Alice Weidel)的领导人,这是德国政治史上第一次,在50年或更长时间里,德国基督教民主联盟(CDU)实际上与AfD在某件事情上达成了合作。突然之间,AfD成为一个可行的竞争对手。他们是一个反精英阶层,试图接管德国政治体系的右翼。

所以,基本上,无论你走到世界的哪个角落,都有一个反精英阶层出现,说:“哦,我能做得更好。”这是一个精英阶层之间的斗争。大众是意识到这一点的,他们正在观看民主社会,他们最终会做出决定,因为他们会决定他们要投票给谁。

这就是为什么共和党选民决定他们要投票给特朗普而不是杰布·布什(Jeb Bush)。这就是反精英阶层击败精英阶层的情况。这实际上也与对特朗普的批评有关,这非常有趣,即特朗普被现有的精英阶层批评说:“哦,他并不是人民的人。他是一个超级富有的亿万富翁,他住在金色的阁楼里,到处都有人开车送他。如果你是一个肯塔基州或威斯康星州的乡村农民,你不应该认为他是你们的人。”

重点从来不是特朗普是人民的人。重点是特朗普是一个反精英阶层,他能够更好地代表人民。这就是他整个运动的基础。顺便说一下,媒体领域也是如此。你所描述的一切正是媒体领域发生的事情。精英媒体统治了50年,它是电视新闻、有线电视新闻、报纸和这些知名杂志。现在你有了反精英阶层。反精英阶层就是Patrick你和(知名播客主播)乔·罗根(Joe Rogan)。还有更多的人。

顺便说一下,如果你看看数字,这是非常清楚的,大众、观众、读者正在离开旧的媒体,转向新的媒体。现有的精英阶层对此非常愤怒。他们愤怒地撰写关于你们这些家伙的所有负面文章,说你们都是一群白人至上主义者,整个事情都很糟糕。就像,这就是世界的方式。所以我们正处于这一切之中。我不知道“过渡”是否是正确的术语。它更像是旧精英阶层和新精英阶层之间的一场激烈战斗。

Patrick:导致上一代精英阶层衰落的最初种子是什么,导致了那些11%的支持率?你认为这主要归因于什么?

Marc:有两种理论。一种理论是这些支持率是错误的,而另一种理论是这些支持率是正确的。通过“错误”,我的意思是这些支持率被正确地测量了,但人们给出了错误的答案。

如果你是CNN或哈佛大学的负责人,或者你负责任何类似的机构,而你的支持率只有11%……顺便说一下,盖洛普(Gallup)50年来一直在进行一项非常了不起的调查,名为“机构信任度”。你可以通过谷歌搜索“2024年盖洛普机构信任度调查”,你会看到一些非常壮观的图表,你会发现机构信任度基本上在20世纪60年代末和70年代初达到顶峰,然后一直在下降。

顺便说一下,这种现象早于互联网的出现。有趣的是,它被归咎于互联网,但它早于互联网。所以,这是一种从20世纪70年代开始发展起来的现象,并且一直在加速。顺便说一下,自2020年以来,这些支持率的下降速度更快。

它们就像这样滑落,然后在2020年后就直线下降。电视网络新闻,我不知道具体数字是多少。它是个位数,人们完全不再相信它了。他们不再相信电视新闻上说的内容。顺便说一下,观众收视率也在以同样的方式下降。

所以,一种理论是,如果你是NBC新闻或CNN或哈佛大学的负责人,你的理论可能是:“哦,人们错了。人们被误导了,他们被欺骗了,他们被民粹主义者和煽动者欺骗了,他们被虚假信息欺骗了。”这就是为什么“虚假信息”这个概念变得如此流行。……人们被恶意行为者、民粹主义者和煽动者欺骗了,这只是时间问题,直到我们向人们解释他们被欺骗了。他们会重新相信我们。

所以,这是一种理论。另一种理论是精英阶层已经腐化了。他们已经腐化、功能失调、腐败,他们不再提供服务了。在这种理论下,这些数字、支持率的下降是正确的,因为每次你看到国会,他们都在毫无顾忌地把你的钱花在各种疯狂的事情上。如果你去看CNN或NBC新闻,他们总是在关于一千件不同的事情上对你撒谎。如果你去哈佛,他们会教你种族共产主义,美国是邪恶的,等等,这些疯狂的事情。

在这种理论下,人们是正确的,人们已经看穿了这些精英阶层。这些精英阶层基本上已经当权太久,他们拥有太多权力,他们没有受到足够的审查,他们没有受到足够的竞争压力,他们已经在原地腐化,他们不再提供服务了。现实可能是这两种情况都有。很容易让下一个煽动者出现,只是开始向当权者扔石头,说任何东西。

如果你是一个今天没有政治权力但想要它的人,最容易做的事情就是出现并开始大喊大叫,说当前的精英阶层是腐败的。也许这有点正确,煽动主义有点作用,或者不管是什么,但……但我认为大部分原因是精英阶层已经腐化了。

我的版本非常直接,Burnham在书中谈到了这一点。他谈到了“精英的循环”。他说,为了让一个精英阶层真正保持健康、真实、富有成效,并且不腐化,它需要不断地注入新的才能。它通过精英循环的过程来做到这一点。

所以,它会做的是,它会识别出有前途的年轻人才,并邀请他们加入精英阶层。它这样做有两个原因。一是为了自我更新。另一个是那些人最有可能成为反精英阶层。所以,这也是为了阻止未来的竞争。所以,我的经历从我22岁开始,就是,“哦,嘿,马克,我们非常希望你能来达沃斯(Davos)。我们非常希望你能来阿斯彭(Aspen)。我们非常希望你能来纽约参加这个大型会议。我们非常希望你能来参加纽约时报的晚宴聚会。我们希望你能和记者们一起玩(hang-out)25年。”这就是我所做的,这就像,“哦,这听起来很棒。这些是世界上最优秀的人。他们掌控着一切。他们拥有最好的学位,他们毕业于最好的学校。他们拥有所有的权力位置。他们喜欢我。他们认为我很棒。”

他们不停地夸赞我,我来自威斯康星州的玉米地。我到了,我进入了精英阶层。

我所要做的就是永远不要与任何事情争论。我所要做的就是同意纽约时报上说的任何事情,同意达沃斯上说的任何事情,投票给你应该投票的候选人,向你应该捐赠的候选人捐款,永远、永远、永远不要偏离轨道。然后你就会成为精英阶层的一部分。

我有很多同龄人做到了这一点。有些人现在是世界上最大的民主党捐赠者,他们完全融入了精英阶层,他们在那里,他们玩得很开心,他们认为这一切都很棒,这很棒。有些人觉得这样很好,也许这是正确的事情。

然后有些人到了某个时候,他们环顾四周。这就像JD·万斯(J.D. Vance)的故事。他在肯塔基州的农村长大,或者俄亥俄州的阿巴拉契亚地区。他最终进入了耶鲁大学。他最终被邀请进入所有这些内部圈子。

然后他最终环顾四周,他只是说:“哇,这些人根本不是我想象中的那样。这些人是自私的、腐败的,他们在关于一切的事情上都在撒谎,他们正在从事言论压制,他们非常专制,他们正在掠夺公共财政。哦,我的上帝,我这辈子一直被欺骗了。这些人不值得他们所拥有的尊重,也许应该有一个新的精英阶层来掌权。”所以,这就是目前正在展开的很多争论。是的,我是一个案例研究。

05

乐观与悲观:世界会更好吗?

Patrick:如果我们戴上一副乐观的眼镜,你强调早期风险投资。你会遇到所有这些年轻、聪明的人,他们即将去建立未来。让我们戴上一副乐观的眼镜,假设AI在所有我们可以验证结果的领域都产生了最积极的影响。推理变得如此强大。

那么,还有哪些相关的瓶颈会阻碍我们所期望的技术革命的爆发?那可能是医学中的临床试验,或者某些东西的进展速度比AI要慢,而AI并不是问题。我们将渴望取得进展。

但原子世界、监视世界或临床试验世界等,可能会成为限制因素,而不是智力和知识。你最感兴趣的是哪些瓶颈?

Marc:我一直以来对技术变革的思考方式是,曾经有三条线在图表上,现在变成了四条线。所以,一条是技术变革的速度,这是一条线,一切通常都在变得越来越好。然后每隔一段时间,你会看到这些不连续的跳跃,或者某种东西变得戏剧性地更好,就像上周AI发生的事情一样。

然后你还有另一条线在它上面,那就是社会变革,基本上是,世界何时准备好接受新事物。有时候你会看到这种现象,新事物实际上在世界准备好之前就存在了,出于某种原因,它没有被采用。然后五年后或五十年后,它突然起飞并迅速发展。所以,有一个社会层面,然后在上面还有一个金融层面,即资本市场是否愿意为其提供资金。它能否产生回报?

我认为作为一个企业家或技术投资者的艺术,是试图跨越这三者。

所以,你试图支持一些东西,技术已经真正准备好,社会已经准备好采用它,而你实际上可以为其获得资金或将其上市并使其公开。

所以,你必须将这三条曲线对齐。

我们日常工作中所做的很多事情就是对齐这三条曲线。第四条线现在在过去五年里出现了。在过去四年里,压倒性的答案是政府。这对我来说非常奇怪和令人不安,当我第一次遇到它时,因为我不习惯这样。而且我从未将我们视为参与政治或具有党派性,或者我们真的试图去华盛顿寻求青睐。我们也没有试图去获取补贴。但我们也不认为我们需要做任何事情来避免被踩踏。然后这种情况突然发生了。

……

Patrick:你最能感受到这种精英阶层想要摧毁你的方式是什么?它是如何表现出来的?

Marc:这与一种全国性的情绪转变大致巧合,可能是在2013年到2017年之间。我是在90年代长大的,从政治上讲,我是一个克林顿和戈尔的默认民主党人。当时有一个“交易”(The Deal),大写的D,即,是的,你是一个民主党人,但民主党人是亲商业的,他们热爱科技,他们热爱初创公司。克林顿和戈尔热爱硅谷。他们热爱新技术。他们总是对我们所做的事情感到兴奋。他们总是愿意帮助我们,如果其他国家来针对我们,或者别的什么。他们总是试图帮助我们并支持我们。

是的,你可以成为一个亲商业、亲科技的民主党人。这很棒。你可以赚很多钱。人们会写很多关于你的伟大文章,然后你把所有的钱都捐出去,你成为一个慈善家,这很棒。

你死了,你的讣告上会说他是一个伟大的企业家和一个伟大的慈善家,一切都很美好。基本上,从2013年开始,这个交易的每一个方面都崩溃了。这在很多方面都表现出来,但首先是媒体报道。主流媒体的官方机构开始转向我们,我们所做的一切都是邪恶的。这实际上相当令人惊讶。2012年,社交媒体被主流媒体视为一个绝对的、纯粹的好东西,因为它帮助奥巴马连任,……。

部分原因是员工群体被激进化了,顺便说一下。出现了一种奇怪的情况,这些大型投资经理出现,要求你在公司中采取激进的政治立场,这在当时是完全荒谬的。然后最终,政府本身出现了,特朗普政府的官僚机构开始这样做,这超出了他的直接控制范围。

伴随着无尽的起诉、调查、韦尔斯通知、去银行化、审查、攻击,试图全面摧毁整个行业。当然,这最终是我们做出反应的原因。我的希望是这一切已经结束。也就是说,新政府正在采取一种非常不同的方法,不再做所有这些事情。

然后我的希望是,下一个民主党政府将意识到攻击科技和攻击初创公司实际上并不必要。事实上,这可能是反生产力的,因为如果你把埃隆·马斯克赶出你的阵营,这是有后果的。我与许多民主党人交谈,我们在公司支持许多民主党人,许多国会议员和参议员,我下周还会再次去和他们交谈。

基本上,他们告诉我的是,看,在民主党内部有一场内战,一边是我们这些人认为党应该回归中间,停止攻击资本主义、攻击商业和攻击科技,只是重新赢得选举。

我的希望是,他们会回归中间,这样我们就再也不用经历这一切了。我们可以与双方保持积极的关系,但我们会看到会发生什么。

Patrick:我和其他许多人一样,对全球供应链的性质和状态非常感兴趣。当你深入研究药品的成分,或者许多其他东西的成分时,你会看到世界是多么相互依赖的,尤其是美国对外部世界的依赖,用于一般的供应链。

我很好奇你是如何思考和希望这种状态在未来十年左右演变的,因为显然我们走向全球是有原因的。但现在,全球供应链确实存在许多脆弱的环节。你如何看待经济和经济故事的这一部分的演变?回到你刚才提到的,你希望美国赢得供应链制造,美国将如何赢得这场竞争,以及今天你听到的所有这些令人兴奋的想法。

Marc:是的,这真的很重要,这与过去大不相同。……正如你所知,供应链的复杂性。以iPhone为例,这是典型的产品。有一个文件你可以在线下载,可能有点过时了。但它列出了组成iPhone的组件以及这些组件来自哪里。我十年前读过的一个文件,可能现在有一个更新的版本,但十年前我读过的文件显示,至少在那时,iPhone的零部件来自40个不同的国家。

因此,当iPhone在中国富士康工厂组装时,实际上有39个国家已经将零部件发送过来,这些零部件被组装成子组件的子组件,然后成为组件。汽车也是如此,机器人也将是这样,任何复杂的东西,任何计算机化的或机械的东西都将具有这种属性。顺便说一下,这实际上很难从贸易数字中得到,因为我相信这是正确的。

中国实际上在出口数字中得到了整个iPhone出口价值的所有的Credit,尽管在中国发生的经济增值实际上是个位数的百分比。因为iPhone中的大部分东西来自其他39个国家。你真正想要做的分析是所谓的经济增值分析。你基本上想说,好吧,在进入iPhone的1000美元中,这些东西的价值来自哪里,以美元为单位?答案是来自世界各地。

这就是关于简单地将离岸外包或逆转全球化争论的问题,我们不是在谈论将钢铁厂从中国带回美国。我们是在谈论解开一个涉及40个国家的供应链,这些国家的东西来回穿梭,因为所有东西都在被建造和组装。顺便说一下,这也是现代经济的一个问题,它与现实相冲突,以多种方式。

……

然后还有政治和经济压力,美国政治体系假设30年来,你可以将制造业从美国离岸外包出去,而那些看到所有工厂关闭的中西部和南部社区只是会坐视不管,他们会想出其他办法。在美国的许多地方,他们从未想出新的办法。事实证明,他们仍然可以投票。

部分原因是,在我的国家(美国),很多人被激进化了,因为政府和企业似乎认为将经济掏空并将一切送到海外是可以的。

所以,发生在美国政治体系中的部分原因是,他们决定他们不再接受这种做法,他们将投票支持不同的东西。当时有人提出了这种观点,但经济效率的论点获胜并带来了好处。它在某些方面得到了回报。但美国的许多人被激进化了。我来自一个很多人被激进化的地方,因为政府和企业似乎认为将经济掏空并将一切送到海外是可以的。

所以,即使你从经济效率中获得了回报,你的政治体系可能也无法承受。你可能会非常后悔。我认为这里没有简单的答案。任何人,我的观点是,谁说这里有简单的答案都是错的。这很复杂。

可能的情况是,世界将保持高度相互依赖,将会有很大的压力和来回的波动。这种动态将与关税和贸易谈判一起持续下去。它将是一个持续的过程,一路上会有曲折,但从根本上说,世界将在许多方面保持相互联系,我们将设法应对。

06

谈宇树和中国机器人产业:「这种特定的环境叫深圳」

Patrick:还有一个潜伏在技术前沿的领域,我没有看到你太多地谈论过,那就是机器人技术。每个人对它的潜力都非常兴奋。很容易想象一个类人机器人,它可以在周围做所有人类不需要再做的事情。要使这个世界成为现实,需要大量的技术突破。你认为机器人技术领域会发生什么?什么是被高估的?什么是被低估的?你是如何看待它的?

Marc:我会列出四件事。所以,我会说手机、无人机、汽车和机器人。基本上,这就是中国正在攀登的阶梯。顺便说一下,这不仅仅是产品,而是整个供应链的阶梯。所以,中国成为所有的电话都在那里组装和制造的地方。所以,正如你所知道的,他们在中国建立了一个完整的生态系统,有成千上万的专门公司,基本上制造各种电子和硬件、机械和计算机相关的东西。

这个特定的环境叫做深圳,这是一个有成千上万的公司集群,基本上制造各种电子和硬件、机械和计算机相关的东西。所以,他们手机的(供应链),然后他们利用这个供应链,为中国赢得了无人机市场。消费级无人机,像大疆无人机。基本上,中国赢得了全球无人机市场,他们的市场份额超过99%。

……

在很多方面,无人机就像一架飞行的手机。它有很多相同的设备,然后它有一些新的东西,但他们想要进入这个领域,至少直到最近。现在他们正在进入汽车领域。原因是,一辆现代的自动驾驶电动汽车更像是一个在车轮上跑的笔记本电脑,或者更像是一个在车轮上跑的智能手机,而不是像传统的内燃机汽车。

美国的特斯拉就是一个例子,其中特斯拉就是一个计算机和许多电池包裹在一个框架里,外面有一些轮胎。一个很好的变化说明是,如果你去传统汽车经销商的服务区,与特斯拉经销商的服务区相比。传统汽车行业的服务区到处都是油和污垢,每个人都有工作服,他们整天都在用一块脏布擦手。

你去特斯拉经销商的服务区,那里就像一个手术室。一切都是干净的,因为它是电动汽车,没有内燃机。所有这些油和污垢的东西都没有了,它只是一个计算机。中国人基本上现在正在汽车领域做他们曾经在无人机和智能手机领域做过的事情,即他们建立了一个完整的生态系统,利用这些其他供应链。他们建立了一个完整的生态系统,拥有制造自动驾驶电动汽车所需的所有零部件。现在他们正在将这些汽车推向市场。突然之间,它们变得非常好,就像中国的手机和无人机一样好,它们完全现代化,非常先进,非常便宜,处于技术前沿。汽车也变得非常好,它们的价格只有美国同类汽车的三分之一或四分之一。

第四阶段是机器人。如果你有电话、无人机和汽车的供应链,你几乎拥有了制造机器人的所有东西。这是下一个阶段。他们正在这样做。当然,美国有埃隆和其他公司正在制造类人机器人。我希望并期待他们会做得很好。但中国肯定也在这样做。

我最关注的公司是一家中国的国家冠军企业,叫做Unitree(宇树科技)。我们没有参与其中,但Unitree销售的机器狗与波士顿动力(Boston Dynamics)的机器狗相当。波士顿动力的机器狗售价在5万到10万美元之间,这就是为什么你很少看到它们。Unitree的狗起价1500美元,顺便说一下。

我们有两只,它们很棒。它们可以做后空翻,它们可以爬楼梯,它们可以和你交谈,它们内置了大型语言模型,它们可以在你院子里跑来跑去的时候教你量子物理学,这很棒。然后他们现在也开始推出类人机器人,价格也低得多。他们肯定在朝着机器人方向发展。

这将是一个真正的拉锯战,如果你相信类人机器人将会出现,而我确实相信,而且在大规模上,如果中国愿意以1万或2万美元的价格制造它们,我们可以购买十亿个,突然之间,我们有了机器人建造房子,做园艺工作,做你想让机器人做的一切,等着为你服务,那么中国制造它们并卖给你,而且它们非常便宜并且工作得很好,这是很棒的。

……

电话和无人机已经是一个激烈的问题,但汽车和机器人将会更加激烈。这还没有完全发生,因为机器人领域还没有完全爆发,但我认为机器人领域将会在未来几年内爆发。

Patrick:看着为机器人制造身体和大脑的竞赛非常有趣。像Physical Intelligence这样的美国公司,正在努力构建我们尚未拥有的数据集,就像我们曾经拥有的开放网络来训练AI一样。你是否看到了一些令人兴奋的领域,这些领域中的许多年轻人和公司让你感到兴奋,但你觉得市场还没有意识到正在发生的事情以及可能的潜力?

Marc:我想可能是生物技术(Biotech)。好消息是,在现代世界中,有很多人对新技术感兴趣,也有很多人会谈论它。当我还是个孩子的时候,早期采用市场的规模非常小。所以,想要他们的第一台个人电脑或其他东西的人只是极少数。

现在你有5000万或1亿早期采用者,他们只是想要最新的东西,并且一直在网上谈论它。所以我不确定现在是否还有太多的延迟,但可能在生物技术领域,一切,比如生命延长、胚胎选择、可能的生殖技术,从干细胞中获取胚胎,例如。

从干细胞中获取胚胎,你知道,你可能认识很多人有这样的情况,人们在年轻时有生育问题,或者他们到了一定年龄,出现了生育问题,但他们想要更多的孩子,然后他们被迫做出一些艰难的选择,涉及到试管婴儿(IVF)或不同类型的捐赠者。

看起来我们将能够从干细胞中获取胚胎,所以你可以在更晚的年龄拥有真正的生物学意义上的孩子。外部妊娠还有一段时间,但也许在某个时候这将是一个很大的问题。人们经常谈论出生率。好吧,如果你可以在60多岁时继续生育,如果你可以通过外部妊娠拥有十几个孩子,那么更多的人会选择这样做吗?也许会。

所以那是一个方面。另一个可能是说基因优化。所以,一个无休止的热门话题是智力增强。现在我们有了CRISPR,我们拥有了基因编辑技术。

然后科学家们正在找出与智商相对应的数百个基因。所以,你应该有能力提高智商,这引发了一系列下游问题。

……

Patrick:非常有趣。

Marc:我刚才描述的一切都正在成为可能。它们在健康、社会等方面有着令人难以置信的含义,这些含义将在未来几百年内显现出来。所以,我想人们可能会开始更多地意识到在这些领域还有更多的讨论要做,而不是我们现在所做的。

……

Patrick:一个快速的最后一个问题。……,除了前面提到的《马基雅维利主义者》之外,你会选择哪一本?

Marc:我仍然非常认同一本名为《世界上最奇怪的人》(The Weirdest People in the World)的书,作者是约瑟夫·亨里奇(Joseph Henrich)。这本书可能已经有十年的历史了,但我认为这本书并没有得到太多关注。这本书对于理解文化的本质,尤其是不同文化的本质非常有洞察力。

正如你所知,我们现在的政治中有这么多与西方文化有关的内容,以及移民、所有这些不同辩论的含义等。对我来说,这是最具信息量的书籍,试图理解如何思考文化。

Patrick:Marc,非常感谢你抽出时间。

Marc:好的。谢谢你,Patrick。

|原文链接:https://joincolossus.com/episode/the-battle-for-tech-supremacy/

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

030c51f5b07d67f3ef5e0998f1521df6.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

e85a71e90ee5db2d7e3cc115a8a4e7f5.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值