AutoGluon Tabular 表数据全流程自动机器学习 AutoML

本文介绍了AutoGluon Tabular,一个全面的AutoML框架,专注于表数据的处理。该框架提供了数据预处理、模型训练、模型集成等功能,并引入了新颖的神经网络基模型。其亮点包括智能数据预处理、支持断点恢复和约束训练时间的模型训练、以及采用stacking解决过拟合问题的模型集成策略。
摘要由CSDN通过智能技术生成

论文链接:
https://arxiv.org/abs/2003.06505
代码链接:
https://github.com/awslabs/autogluon

背景

表数据的AutoML近几年很火,但是目前没有一个框架做到了集大成,各有一些特色,但效果也一言难尽,比赛中选手常常用到一些可以提升效果的技术,之前的AutoML框架也都没有过多关注,关注点主要放在了模型选择和超参数调节上。

这篇文章是awslab在前两天(13 Mar 2020)挂在了arxiv上,还没有看到机器之心,新智源等媒体的跟进,毕竟是又一大厂的力作,可能马上就又上头条了吧hh。

看完这篇文章的我的评价是:对当前的主流框架做了一个很好的梳理,给了一个不错的baseline给大家当靶子,关注了之前AutoML框架少关注的stacking的过程,效果还可以,接口设计的很优雅,做了比较贴心的数据预处理,支持断点恢复,支持约束训练时间。

接下来我按照pipeline串一下逻辑。

Pipeline

from autogluon import TabularPrediction as task
predictor = task.fi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值