论文链接:
https://arxiv.org/abs/2003.06505
代码链接:
https://github.com/awslabs/autogluon
背景
表数据的AutoML近几年很火,但是目前没有一个框架做到了集大成,各有一些特色,但效果也一言难尽,比赛中选手常常用到一些可以提升效果的技术,之前的AutoML框架也都没有过多关注,关注点主要放在了模型选择和超参数调节上。
这篇文章是awslab在前两天(13 Mar 2020)挂在了arxiv上,还没有看到机器之心,新智源等媒体的跟进,毕竟是又一大厂的力作,可能马上就又上头条了吧hh。
看完这篇文章的我的评价是:对当前的主流框架做了一个很好的梳理,给了一个不错的baseline给大家当靶子,关注了之前AutoML框架少关注的stacking的过程,效果还可以,接口设计的很优雅,做了比较贴心的数据预处理,支持断点恢复,支持约束训练时间。
接下来我按照pipeline串一下逻辑。
Pipeline
from autogluon import TabularPrediction as task
predictor = task.fi