The Revelation of Thinking in Coding-----magic of conservation

Conservation is a very important thinking,because it can show us the essence of problems.
For example,the conservation of energy and momentum can help us solve some physical problems easily instead of thinking about the process of collision.
So the coding is.
I will talk about this from three points.

Simple Abstracting

Let’s have a look at a problem.

We have a series of numbers.We can operate it as follow:Choose three adjacent numbers,add the middle to the left and the right,then turn the middle negative.
Now give you the beginning series and the ending series,please tell me if it can be operated to achieve the transform.

We will quickly find that the sum of every three adjacent numbers will not be changed however we operate it.
But it doesn’t work ,for our solution.We can get a counterexample easily:(1,2,3)and(2,1,3).
So, we must think more.
Although the sum of all three numbers doesn’t work,we can observe the sum of part of numbers.
We suppose that the three numbers are a1,a2,a3 and the part sums are S1=a1,S2=a1+a2,S3=a1+a2+a3.
Then we will find something magic.
Before transform,the sums are (S1,S2,S3).
After transform, the sums are (S2,S1,S3).
This is an amazing finding.We can solve the problem with it.

Weighting Conservation

Sometimes, the problem doesn’t have ang conserved value.
But we can build a conserved value by adding weighting.
Let’s think about this problem.

We have lots of cells arranged in a row.There are some balls in some cells.We can operate it in two ways:One is reducing one ball in one of the nonempty cells and putting one ball into two cells next to it in the left sperately;the other is its contray operation.
Now I give you the begining state.You should operate it until it cannot be operated.And then give me your ending state.

When we read it,we may feel it hard to solve.
But we can give the cell some weights to change it.
Two operations tell us that two balls taken from two adjacent cells sperately are equal to the one in the cell on thier right.
So what can you imagine?
Yes, it’s Fibonacci.
We can give every cells a number of Fibonacci.
Then we will find that the sum of the numbers wil not change however we operate it.
And then ,let’s think about when it will stop.
To stop it,two things are needed:

  1. There is at most one ball in each cell.
  2. Two adjacent cells can’t both have balls.

So, these mean what we need to do is only decomposing the sum.
This is the magic of weighting conversation.

Conversation in Interaction

The problem is:

There are n steps.There some of your soldiers on the some of them.Every time you can regroup your soldiers into two groups.And your enemy will kill one group,and the soldiers in the other will go to the next step.If one of your soldiers arrive at the highest step,then you win.
Now I tell you where your soldiers are.Please tell me if you can win.If yes,tell me how many soldiers will get to the top.

The method is similar.
Let’s think about this. If you have two soldiers on the No.(n-1) step,can you put them in the same group?Of course, the answer is no.They must be killed together if we do like that.So we must divide them into two groups.So there must be one of them getting to the top.
The fact tell us that every two soldiers in one step are equal to the one on the higher step.
I am sure you have known how to solve it.


PS:为了锻炼自己的英文水平,我会写写英语博客。但防止因我的英语太过顽劣导致大家看不懂,我会在下面翻译一下。所以,不想看英文的可以忽略。想看的,可以帮忙找找错误。谢谢大家。(写英文不容易,给个赞再走呗)

守恒是一种非常重要的思想。它可以向我们揭示问题的本质。
例如,动量守恒和能量守恒就可以帮助我们轻易地解决很多物理问题,而避开了其中复杂的过程。
编程也是一样。
我将会从三个方面谈论这个事情。

简单抽象

先看个题:

我们有一个数列。我们可以按照如下操作它:选择三个连续的数字,将中间一个数字加到旁边两个数字上,然后将中间的数字变成其相反数。
现在我给你开始序列和结束序列。请你告诉我是否可以通过以上操作实现二者的转换。

我们很快会发现在我们操作的过程中三个数的总和是不变的。
但是,这对我们的解题并不起作用,我们很容易就能举出反例:(1,2,3)和(2,1,3).
因此,我们必须进一步思考。
尽管三个数的总和不起作用,但我们可以考虑部分和。
我们假设三个数是a1,a2,a3,三个部分和是S1,S2,S3.
其中S1=a1,S2=a1+a2,S3=a1+a2+a3
现在神奇的事发生了。
变化前,是(S1,S2,S3)
变化后,是(S2,S1,S3)
这是一个神奇的发现。这样我们就可以解决问题了/

权值守恒

有时,问题本身并没有守恒的量。
但是我们可以通过添加权值来创造守恒的量。
让我们来看看这道题:

我们有一列格子。一些格子中会放入一些球,我们可以按照两种方法来操作它:一种是从一个非空的格子中取出一个球,然后在它左边两个格子中各放入一个球;另一个操作则是它的逆操作。
现在,我给你初始的状态。你应当操作它直到不能操作为止,并告诉我最终的状态。

乍一看,有点难。
但是我们可以给格子赋权值来改变它。
这两个操作告诉我们一个事实,两个相邻的格子中的球等同于其右边一个格子里的一个球。
所以,你想到了什么?
没错,斐波那契数列!
我们可以给每一个格子一个斐波那契数。
然后我们就会发现数字的总和是守恒的。
接下来我们再来思考思考什么时候会停止。
有两个条件:

  1. 每个格子里至多有一个球
  2. 不能有两个相邻的格子里都有球

所以,这告诉我们,我们唯一要做的,就是分解我们得到的总和。
这就是权值守恒的神奇。

交互中的守恒

问题是:

有n个台阶。其中有些台阶上有一些你的士兵。每一次,你需要将你的士兵重新分组成两组。你的敌人会从中选择一组杀掉,另外一组则会上升一个台阶。如果你有一个士兵到达了最高的台阶,你就赢了。
现在我给你你的士兵的初始位置。清告诉我你是否能赢,如果能,请告诉我能到达最高层的人数。

方法是类似的。
如果你有两个士兵在第n-1层,你会把他们分在同一组吗?
显然不会。如果我们那样做,他们就会被敌人一起杀掉。因此,我们必须把他们分到两组,这样就会有其中一个士兵能到达第n个台阶。
这也就告诉我们,一个台阶上的两个士兵相当于更高一级台阶上的一个士兵。
我相信你知道怎么去解决它了。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值