# 使用ZHIPU AI构建智能聊天机器人:从安装到进阶应用全攻略
## 引言
随着人工智能的发展,聊天机器人已成为许多企业用户和个人开发者的核心工具。在本篇文章中,我们将深入探讨如何使用ZHIPU AI的GLM-4多语言大模型,通过LangChain实现智能对话和代码生成。
## 主要内容
### 安装指南
首先,确保在你的Python环境中安装了必要的包。运行以下命令:
```bash
# 安装所需的Python包
!pip install --upgrade httpx httpx-sse PyJWT
导入必要模块
安装完成后,导入需要的模块:
from langchain_community.chat_models import ChatZhipuAI
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
设置API密钥
登录ZHIPU AI获取API密钥,并在代码中进行设置:
import os
os.environ["ZHIPUAI_API_KEY"] = "your_api_key_here" # 使用API代理服务提高访问稳定性
初始化ZHIPU AI聊天模型
以下是如何初始化聊天模型的示例:
chat = ChatZhipuAI(
model="glm-4",
temperature=0.5,
)
基本用法
通过系统消息和用户消息调用模型:
messages = [
AIMessage(content="Hi."),
SystemMessage(content="Your role is a poet."),
HumanMessage(content="Write a short poem about AI in four lines."),
]
response = chat.invoke(messages)
print(response.content) # 显示AI生成的诗
进阶功能
流式支持
对于持续交互,使用流式特性:
from langchain_core.callbacks.manager import CallbackManager
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
streaming_chat = ChatZhipuAI(
model="glm-4",
temperature=0.5,
streaming=True,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
)
streaming_chat(messages)
异步调用
对于非阻塞调用,使用异步方法:
async_chat = ChatZhipuAI(
model="glm-4",
temperature=0.5,
)
response = await async_chat.agenerate([messages])
print(response)
使用函数调用
GLM-4模型还支持函数调用,以下是一个简单的LangChain json_chat_agent示例:
os.environ["TAVILY_API_KEY"] = "tavily_api_key"
from langchain import hub
from langchain.agents import AgentExecutor, create_json_chat_agent
from langchain_community.tools.tavily_search import TavilySearchResults
tools = [TavilySearchResults(max_results=1)]
prompt = hub.pull("hwchase17/react-chat-json")
llm = ChatZhipuAI(temperature=0.01, model="glm-4")
agent = create_json_chat_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
)
agent_executor.invoke({"input": "what is LangChain?"})
常见问题和解决方案
-
如何解决API访问不稳定的问题?
- 由于某些地区的网络限制,开发者可以考虑使用API代理服务来提高访问的稳定性。
-
如何处理模型返回的错误信息?
- 在
AgentExecutor
中启用handle_parsing_errors
选项,以便更好地处理解析错误。
- 在
总结和进一步学习资源
ZHIPU AI的GLM-4模型提供了强大的对话和代码生成能力。本篇文章介绍了从简单安装到复杂应用的完整过程。如果希望更深入地学习,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---