洛谷 P1062 数列[解法二:二进制]

题目描述

给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是:

1,3,4,9,10,12,13,…

(该序列实际上就是:3^0,3^1,3^0+3^1,3^2,3^0+3^2,3^1+3^2,3^0+3^1+3^2,…)

请你求出这个序列的第N项的值(用10进制数表示)。

例如,对于k=3,N=100,正确答案应该是981。
输入输出格式
输入格式:

输入文件只有1行,为2个正整数,用一个空格隔开:

k N (k、N的含义与上述的问题描述一致,且3≤k≤15,10≤N≤1000)。

输出格式:

输出文件为计算结果,是一个正整数(在所有的测试数据中,结果均不超过2.1*109)。(整数前不要有空格和其他符号)。

输入输出样例
输入样例#1:

3 100

输出样例#1:

981

说明

NOIP 2006 普及组 第四题


【分析】
用二进制表示出n,然后用k进制计算求和


【代码】

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
ll n,k;
ll a[10005];
int main()
{
    ll i=0,di=1,sum=0;
    scanf("%lld%lld",&k,&n);
    while(n)
    {
        a[++i]=n%2;n/=2;
        sum+=a[i]*di;di*=k;
    }
    printf("%lld\n",sum);
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值