题目描述
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
输入输出格式
输入格式:
第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
输出格式:
最小平均等待时间,答案精确到小数点后2位。
输入输出样例
输入样例#1:
2 2
3 2
1 4
输出样例#1:
1.50
说明
(2<=M<=9,1<=N<=60), (1<=T<=1000)
【分析】
作为一个初学费用流的萌新,我表示这种神题根本不会嗷
这题的神奇之处在于把人给拆掉了…(表示害怕)
由于我们很难确定某个人的等待时间(这依赖于在他之前的人找同一个师傅修车的人),所以我们对每个人单独计算它对后面的人的影响。
考虑某个师傅一共给k个人修车,那么第i个人修车就让包括他在内的(k-i+1)个人等待时间增加了他修车的时间x,那么它对答案的贡献就是x*(k-i+1)。
由于某个师傅修了多少个车也很难确定,所以我们倒过来考虑:
对于某个师傅,倒数第i个人的贡献为x*i。
所以我们给每个师傅每次修车都建一个点就可以了。点数为O(n*m)。
以上
【代码】
//洛谷 P2517 [HAOI2010]订货
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define inf 1e9+7
#define p(i,j) (i-1)*n+j
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100005<<2;
queue <int> q;
int n,m,s,t,c,cnt,ans;
bool vis[mxn];
int head[mxn],dis[mxn],pre[mxn];
struct node {int from,to,next,d,flow;} f[mxn];
inline void add(int u,int v,int d,int flow)
{
f[++cnt].to=v,f[cnt].from=u,f[cnt].next=head[u],f[cnt].d=d,f[cnt].flow=flow,head[u]=cnt;
f[++cnt].to=u,f[cnt].from=v,f[cnt].next=head[v],f[cnt].d=-d,f[cnt].flow=0,head[v]=cnt;
}
inline void spfa()
{
int i,u,v,d,flow;
memset(dis,0x3f,sizeof dis);
memset(pre,-1,sizeof pre);
M(vis);
q.push(s);
dis[s]=0;
vis[s]=1;
while(!q.empty())
{
u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i;i=f[i].next)
{
v=f[i].to,d=f[i].d,flow=f[i].flow;
if(dis[v]>dis[u]+d && flow>0)
{
dis[v]=dis[u]+d;
pre[v]=i; //记录前驱
if(!vis[v]) vis[v]=1,q.push(v);
}
}
}
}
inline void maxflow()
{
int i,u,v,d;
spfa();
while(pre[t]!=-1)
{
int tmp=inf;
for(i=pre[t];i!=-1;i=pre[f[i].from])
tmp=min(tmp,f[i].flow);
ans+=dis[t]*tmp;
for(i=pre[t];i!=-1;i=pre[f[i].from])
{
f[i].flow-=tmp;
if(i&1) f[i+1].flow+=tmp;
else f[i-1].flow+=tmp;
}
spfa();
}
}
int main()
{
int i,j,k,u,v,d,x,flow;
scanf("%d%d",&m,&n); //n个车,m个工人
s=0,t=n*m+n+1;
fo(i,1,n)
fo(j,1,m)
{
scanf("%d",&x);
fo(k,1,n) //k:师傅j修的车i是倒数第k辆...
add(i+n*m,p(j,k),k*x,1);
}
fo(i,1,n) add(s,i+n*m,0,1);
fo(j,1,m) fo(k,1,n) add(p(j,k),t,0,1);
maxflow();
double ha=ans;
printf("%.2f\n",ha/n);
return 0;
}