bzoj 4555 [Tjoi2016&Heoi2016]求和

4555: [Tjoi2016&Heoi2016]求和

Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 367 Solved: 295
[Submit][Status][Discuss]
Description

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

现在他想计算这样一个函数的值:

S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?
Input

输入只有一个正整数

Output

输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

Sample Input

3
Sample Output

87
HINT

Source


【分析】

CDQ分治+NTT

看到这个式子感觉无从下手…

考虑它的组合意义:把n个小球中任意多个小球划分到任意多个非空有标号集合,每个集合选或者不选的方案数。

直接这样考虑是无法递推求解的

ans=ni=1F(i)

那么 F(i) 的组合意义是:把i个小球划分到任意多个非空有标号集合,每个集合选或者不选的方案数。

枚举第一个位置放 j 个小球,那么

F(i)=ij=1F(ij)C(i,j)2=ij=1F(j)C(i,j)2

把C公式拆开
F(i)=ij=1F(j)fac(i)inv(j)inv(ij)2

移项以后得到

F(i)fac(i)=ij=1F(j)inv(j)inv(ij)2
F(i)inv(i)=ij=1F(j)inv(j)inv(ij)2

f(i)=F(i)inv(i)

得到 f(i)=ij=1f(j)inv(ij)2

然后分治NTT


【代码】

//bzoj 4555 [Tjoi2016&Heoi2016]求和
#include<bits/stdc++.h>
#define M 400000
#define ll long long
#define fo(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
const int mxn=400005;
const int mod=998244353;
int n,m,L,N,ans;
int fac[mxn],inv[mxn];
int a[mxn],b[mxn],R[mxn],f[mxn];
inline void init()
{
    fac[0]=inv[0]=inv[1]=1;
    fo(i,1,M) fac[i]=(ll)fac[i-1]*i%mod;
    fo(i,2,M) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
    fo(i,1,M) inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
inline int power(int x,int k)
{
    int res=1;
    while(k)
    {
        if(k&1) res=(ll)res*x%mod;
        x=(ll)x*x%mod,k>>=1;
    }
    return res;
}
inline void NTT(int *a,int f)
{
    fo(i,0,n-1) if(i<R[i]) swap(a[i],a[R[i]]);
    for(int i=1;i<n;i<<=1)
    {
        int wn=power(3,(mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1))
        {
            int w=1;
            for(int k=0;k<i;k++,w=(ll)w*wn%mod)
            {
                int x=a[j+k],y=(ll)w*a[j+k+i]%mod;
                a[j+k]=(x+y)%mod;
                a[j+k+i]=(x-y+mod)%mod;
            }
        }
    }
    if(f==-1)
    {
        reverse(a+1,a+n);
        int rev=power(n,mod-2);
        fo(i,0,n-1) a[i]=(ll)a[i]*rev%mod;
    }
}
inline void CDQ(int l,int r)
{
    if(l==r) return;
    int mid=l+r>>1;
    CDQ(l,mid);

    L=0,n=r-l;
    fo(i,0,4*n) a[i]=b[i]=0;
    fo(i,l,mid) a[i-l]=f[i];
    fo(i,1,r-l) b[i]=2*inv[i]%mod;
    m=2*n;for(n=1;n<=m;n<<=1) L++;
    fo(i,0,n-1) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    NTT(a,1),NTT(b,1);
    fo(i,0,n) a[i]=(ll)a[i]*b[i]%mod;
    NTT(a,-1);
    fo(i,mid+1,r) f[i]=(f[i]+a[i-l])%mod;

    CDQ(mid+1,r);
}
int main()
{
    init();
    scanf("%d",&N);
    f[0]=1,CDQ(0,N);
    fo(i,0,N) ans=(ans+(ll)f[i]*fac[i]%mod)%mod;
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值