4555: [Tjoi2016&Heoi2016]求和
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 367 Solved: 295
[Submit][Status][Discuss]
Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?
Input
输入只有一个正整数
Output
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
Sample Input
3
Sample Output
87
HINT
Source
【分析】
CDQ分治+NTT
看到这个式子感觉无从下手…
考虑它的组合意义:把n个小球中任意多个小球划分到任意多个非空有标号集合,每个集合选或者不选的方案数。
直接这样考虑是无法递推求解的
令 ans=∑ni=1F(i)
那么 F(i) 的组合意义是:把i个小球划分到任意多个非空有标号集合,每个集合选或者不选的方案数。
枚举第一个位置放 j 个小球,那么
把C公式拆开
F(i)=∑ij=1F(j)∗fac(i)∗inv(j)∗inv(i−j)∗2
移项以后得到
F(i)fac(i)=∑ij=1F(j)∗inv(j)∗inv(i−j)∗2
F(i)∗inv(i)=∑ij=1F(j)∗inv(j)∗inv(i−j)∗2
令 f(i)=F(i)∗inv(i)
得到 f(i)=∑ij=1f(j)∗inv(i−j)∗2
然后分治NTT
【代码】
//bzoj 4555 [Tjoi2016&Heoi2016]求和
#include<bits/stdc++.h>
#define M 400000
#define ll long long
#define fo(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
const int mxn=400005;
const int mod=998244353;
int n,m,L,N,ans;
int fac[mxn],inv[mxn];
int a[mxn],b[mxn],R[mxn],f[mxn];
inline void init()
{
fac[0]=inv[0]=inv[1]=1;
fo(i,1,M) fac[i]=(ll)fac[i-1]*i%mod;
fo(i,2,M) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
fo(i,1,M) inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
inline int power(int x,int k)
{
int res=1;
while(k)
{
if(k&1) res=(ll)res*x%mod;
x=(ll)x*x%mod,k>>=1;
}
return res;
}
inline void NTT(int *a,int f)
{
fo(i,0,n-1) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1)
{
int wn=power(3,(mod-1)/(i<<1));
for(int j=0;j<n;j+=(i<<1))
{
int w=1;
for(int k=0;k<i;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+k+i]%mod;
a[j+k]=(x+y)%mod;
a[j+k+i]=(x-y+mod)%mod;
}
}
}
if(f==-1)
{
reverse(a+1,a+n);
int rev=power(n,mod-2);
fo(i,0,n-1) a[i]=(ll)a[i]*rev%mod;
}
}
inline void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>1;
CDQ(l,mid);
L=0,n=r-l;
fo(i,0,4*n) a[i]=b[i]=0;
fo(i,l,mid) a[i-l]=f[i];
fo(i,1,r-l) b[i]=2*inv[i]%mod;
m=2*n;for(n=1;n<=m;n<<=1) L++;
fo(i,0,n-1) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
NTT(a,1),NTT(b,1);
fo(i,0,n) a[i]=(ll)a[i]*b[i]%mod;
NTT(a,-1);
fo(i,mid+1,r) f[i]=(f[i]+a[i-l])%mod;
CDQ(mid+1,r);
}
int main()
{
init();
scanf("%d",&N);
f[0]=1,CDQ(0,N);
fo(i,0,N) ans=(ans+(ll)f[i]*fac[i]%mod)%mod;
printf("%d\n",ans);
return 0;
}