Huffman编码(二叉树的应用)
一、实验号题目:
Huffman编码(二叉树应用)
二、实验目的和要求:
1.要求对文件进行Huffman编码的算法,以及对乙编码文件进行解码的算法,为简单起见,可以假设文件是存放在一个字符向量;
2.熟练掌握二叉树的应用,具体要求如下:
.最小冗余码/哈夫曼码
● ASCII码/定长码
ab12: 01100001 01100010 00110001 00110010
97 98 49 50
● 哈夫曼码/不定长码
能按字符的使用频度,使文本代码的总长度具有最小值。
3.熟练掌握计算机系统的基本操作方法,了解如何编
辑、编译、链接和运行一个C++程序及二叉树上的
基本运算;
4.上机调试程序,掌握查错、排错使程序能正确运行。
三、实验的环境:
1.硬件环境:显示器、主机、鼠标、键盘等;
2.软件环境:
操作系统:Windows xp;
编译软件:Microsoft Visual C++ 6.0。
四、算法描述:
1.本实验要求用huffman编码对文件进行压缩,根据huffman树对文件中各字符分配代码,所以可以按照以下几步进行:
1)打开要压缩的文件,对文件中的字符进行统计,统计每个字符在文件中出现的次数;
2)在源文件中建立huffman树,给huffman树分配编码,从而获取每个字符的编码;
3)在用户指定的位置新建并打开一个用户输入文件名的目标文件,将建立的huffman树保存在这个目标文件中,并将源文件中的每个字符的huffman编码写入这个目标文件。
2.在解压阶段,先根据用户输入的文件名新建并打开一个目标文件,然后根据存储的huffman树和给各个字符分配的代码,将源文件文件中的每一个01串还原成对应的字符,并将还原的每一个字符写入该目标文件中,从而达到解压的目的。
3.建立huffman树的算法
1)根据给定的n个权值,构造由n棵二叉树构成的森林F=,其中每棵二叉树分别都是只含有一个带权值为的根结点,其左、右子树为空;
2)在森林F中选取根结点的权值最小的两棵二叉树(若这样的二叉树不止两棵,则任选其中两棵),分别作为左、右子树构造一棵新的二叉树,并置这棵新的二叉树根结点的权值为其左、右子树根结点的权值之和;
3)从森林F中删去这两棵二叉树,同时将刚生成的新二叉树加入到森林F中。
4)重复步骤2)和3),直至森林F中只含一棵二叉树为止,则得到的二叉树就是huffman树。
五、源程序清单:
//Utility.h
#include<string.h> //standard string operations
#include<iostream> //standard iostream operations
#include<limits.h> //numeric limits
#include<math.h> //mathematical functions
#include<fstream> //file input and output
#include<ctype.h> //character classification
#include<time.h> //date and time function
#include<conio.h> //con input and output
#include<stdlib.h> //standard libray
#include<stdio.h> //standard I/O libray
enum Error_co
//enum bool{false,true};
//Lk_stack.h
template<class Node_entry>
struct Node {
// da
Node_entry entry;
Node<Node_entry> *next;
// constructors
Node();
Node(Node_entry item, Node<Node_entry> *add_on = NULL);
};
template<class Stack_entry>
class Stack {
public:
// Standard Stack methods
Stack();
bool empty() const;
Error_co
Error_co
Error_co
void clear();
// Safety features for linked structures
~Stack();
Stack(const Stack<Stack_entry> &original);
void operator =(const Stack<Stack_entry> &original);
protected:
Node<Stack_entry> *top_node;
};
template<class Node_entry>
Node<Node_entry>::Node()
{
next = NULL;
}
template<class Node_entry>
Node<Node_entry>::Node(Node_entry item, Node<Node_entry> *add_on)
{
entry = item;
next = add_on;
}
template<class Stack_entry>
Stack<Stack_entry>::Stack()
{
top_node=NULL;
}
template<class Stack_entry>
bool Stack<Stack_entry>::empty() const
{
if(top_node==NULL)
return true;
else
return false;
}
template<class Stack_entry>
Error_co
/*
Post: Stack_entry item is added to the top of
the Stack; returns success or returns a co
of overflow if dynamic memory is exhausted.
*/
{
Node<Stack_entry> *new_top = new Node<Stack_entry>(item, top_node);
if (new_top == NULL) return overflow;
top_node = new_top;
return success;
}
template<class Stack_entry>
Error_co
/*
Post: The top of the Stack is removed. If the Stack
is empty the method returns underflow; otherwise it returns success.
*/
{
Node<Stack_entry> *old_top = top_node;
if (top_node == NULL) return underflow;
top_node = old_top->next;
delete old_top;
return success;
}
template<class Stack_entry>
Error_co
{
if(empty())
return underflow;
else{
item=top_node->entry;
return success;
}
}
template<class Stack_entry>
void Stack<Stack_entry>::clear() // clear elememt
/*
Post: The Stack is cleared.
*/
{
while (!empty())
pop();
}
template<class Stack_entry>
Stack<Stack_entry>::~Stack() // Destructor
/*
Post: The Stack is cleared.
*/
{
clear();
}
template<class Stack_entry>
Stack<Stack_entry>::Stack(const Stack<Stack_entry> &original) // copy constructor
/*
Post: The Stack is initialized as a copy of Stack original.
*/
{
Node<Stack_entry> *new_copy, *original_node = original.top_node;
if (original_node == NULL) top_node = NULL;
else
{ // Duplicate the linked nodes.
top_node = new_copy = new Node<Stack_entry>(original_node->entry);
while (original_node->next != NULL)
{
original_node = original_node->next;
new_copy->next = new Node<Stack_entry>(original_node->entry);
new_copy = new_copy->next;
}
}
}
template<class Stack_entry>
void Stack<Stack_entry>::operator = (const Stack<Stack_entry> &original) // Overload assignment
/*
Post: The Stack is reset as a copy of Stack original.
*/
{
Node<Stack_entry> *new_top, *new_copy, *original_node = original.top_node;
if (original_node == NULL) new_top = NULL;
else
{ // Duplicate the linked nodes
new_copy = new_top = new Node<Stack_entry>(original_node->entry);
while (original_node->next != NULL)
{
original_node = original_node->next;
new_copy->next = new Node<Stack_entry>(original_node->entry);
new_copy = new_copy->next;
}
}
while (!empty()) // Clean out old Stack entries
pop();
top_node = new_top; // and replace them with new entries.
}
//Huffman.h
const unsigned int n=256; //字符数
const unsigned int m=256*2-1; //结点总数
struct HTNode{ //压缩用Huffman树结点
unsigned long weight; //字符频度(权值)
unsigned int parent,lchild,rchild;
};
struct Buffer{ //字节缓冲压缩用Huffman树
char ch; //字节
unsigned int bits; //实际比特数
};
class HuffmanTree{ //Huffman树
public:
void Co
void UnCode(); //译码
private:
HTNode HT[m+1]; //树结点表(HT[1]到HT[m])
char Leaf[n+1]; //叶结点对应字符(leaf[1]到leaf[n])
char *HuffmanCode[n+1]; //叶结点对应编码(*HuffmanCode[1]到*HuffmanCode[n])
unsigned int count; //频度大于零的字符数
unsigned int char_index[n]; //字符对应在树结点表的下标(char_index[0]到char_index[n-1])
unsigned long size; //被压缩文件长度
FILE *infp,*outfp; //输入/出文件
Buffer buf; //字符缓冲
void Stat(); //统计字符出现频度并过滤掉频度为零的字符
//在HT[0]~HT[k]中选择parent为-1,树值最小的两个结点s1,s2
void Select(unsigned int k, unsigned int &s1, unsigned int &s2);
void Write(unsigned int bit); //向outfp中写入一个比特
void Write(unsigned int num,unsigned int k);//向outfp中写入k个比特
void WriteToOutfp(); //强行写入outfp
void Read(unsigned int &bit); //从infp中读出一个比特
void Read(unsigned int &num,unsigned int k);//从infp中读出k个比特
int NToBits(unsigned int num); //0~num之间的整数用二进位表示所需的最少位数
void CreateFromCodeFile(); //由编码文件中存储的树结构建立Huffman树
//由被压缩文件建立Huffman树,将树结构存入编码文件的文件头部中,并求每个字符的Huffman编码
void CreateFromSourceFile();
};
void HuffmanTree::Co
{
char infName[256],outfName[256];
cout<<"Please input source file name(size less than 4GB):"; //被压缩文件最多GB
cin>>infName;
if((infp=fopen(infName,"rb"))==NULL){
cout<<"Can not open file:"<<infName<<endl;
exit(1);
}
if(feof(infp)!=0){
cout<<"Empty source file:"<<infName<<endl;
exit(1);
}
cout<<"Please input co
cin>>outfName;
if((outfp=fopen(outfName,"wb"))==NULL){
cout<<"Can not open file:"<<outfName<<endl;
exit(1);
}
cout<<"Pocessing..."<<endl;
unsigned char ch;
unsigned int i,c;
for(i=0;i<=n;i++)HuffmanCode[i]=NULL;
CreateFromSourceFile();
rewind(infp);
ch=fgetc(infp);
while(feof(infp)==0){
c=char_index[ch];
for(i=0;i<strlen(HuffmanCode[c]);i++){
if(HuffmanCode[c][i]=='0')Write(0);
else Write(1);
}
ch=fgetc(infp);
}
WriteToOutfp();
fclose(infp);fclose(outfp);
cout<<"Process end."<<endl<<endl;
}
void HuffmanTree::UnCode()
{
char infName[256],outfName[256];
cout<<"Please input co
cin>>infName;
if((infp=fopen(infName,"rb"))==NULL){
cout<<"Can not open file:"<<infName<<endl;
exit(1);
}
if(feof(infp)!=0){
cout<<"Empty co
exit(1);
}
cout<<"Please input target file name:";
cin>>outfName;
if((outfp=fopen(outfName,"wb"))==NULL){
cout<<"Can not open file:"<<outfName<<endl;
exit(1);
}
cout<<"Pocessing..."<<endl;
unsigned int bit,c,i;
CreateFromCodeFile(); //建立Huffman树
Read(bit);
for(i=0;i<size;i++){
c=2*count-1; //2*count-1为根结点的下标
while((HT[c].lchild!=0||HT[c].rchild!=0)&&(feof(infp)==0)){
if(bit==0)c=HT[c].lchild;
else c=HT[c].rchild;
Read(bit);
}
fputc(Leaf[c],outfp); //将字符写入outfp中
}
fclose(infp);fclose(outfp);
cout<<"Process end."<<endl<<endl;
}
void HuffmanTree::Stat()
//统计字符出现频度并过滤掉频度为零的字符
{
unsigned int i,cha;
for(i=1;i<=n;i++)HT[i].weight=0;
size=0;
rewind(infp);
cha=fgetc(infp);
while(feof(infp)==0) //统计字符出现频度
{
HT[cha+1].weight++;
size++;
cha=fgetc(infp);
}
count=0;
for(cha=0;cha<n;cha++){ //过滤掉频度为零的字符
if(HT[cha+1].weight>0){
count++;
Leaf[count]=cha;
HT[count].weight=HT[cha+1].weight;
char_index[cha]=count;
}
}
}
void HuffmanTree::Select(unsigned int k, unsigned int &s1, unsigned int &s2)
{//s1,s2为权值最小的根,且s1的权值小于s2的权值
unsigned int root_count=0; //根结点数;
unsigned int root_index[n]; //根结点下标;
unsigned int tem,i,j;
for(i=1;i<=k;i++)
if(HT[i].parent==0)
root_index[root_count++]=i;
s1=root_index[0];s2=root_index[1];
if(HT[s1].weight>HT[s2].weight){
tem=s1;s1=s2;s2=tem;
}
for(i=2;i<root_count;i++){
j=root_index[i];
if(HT[j].weight<HT[s2].weight){
s2=j;
if(HT[s1].weight>HT[s2].weight){
tem=s1;s1=s2;s2=tem;
}
}
}
}
void HuffmanTree::Write(unsigned int bit) //向outfp中写入一个比特
{
buf.bits++;
buf.ch=(buf.ch<<1)+bit;
if(buf.bits==8){ //缓冲区已满,写入outfp
fputc(buf.ch,outfp);
buf.bits=0;
buf.ch=0;
}
}
void HuffmanTree::Write(unsigned int num,unsigned int k) //向outfp中写入k个比特
{
Stack<unsigned int> s;
unsigned int i,bit;
for(i=1;i<=k;i++){
s.push(num & 1);
num=(num>>1);
}
for(i=1;i<=k;i++){
s.top(bit);
Write(bit);
s.pop();
}
}
void HuffmanTree::WriteToOutfp() //强行写入outfp
{
unsigned int l=buf.bits;
if(l>0)
for(unsigned int i=0;i<8-l;i++)Write(0);
}
void HuffmanTree::Read(unsigned int &bit) //从infp中读出一个比特
{
if(buf.bits==0){
buf.ch=fgetc(infp);
buf.bits=8;
}
bit=(buf.ch & 128)>>7;
buf.ch=buf.ch<<1;
buf.bits--;
}
void HuffmanTree::Read(unsigned int &num,unsigned int k) //从infp中读出k个比特
{
unsigned int bit;
num=0;
for(unsigned int i=0;i<k;i++){
Read(bit);
num=(num<<1)+bit;
}
}
int HuffmanTree::NToBits(unsigned int num) //0~num之间的整数用二进位表示所需的位数
{
unsigned int l=0,power=1;
while(power<=num){
l++;power=power*2;
}
return l;
}
void HuffmanTree::CreateFromCodeFile() //由编码文件中存储的树结构建立Huffman树
{
buf.bits=0; //清空缓冲区
buf.ch=0;
unsigned int num,l,i;
rewind(infp);
fread(&size,sizeof(unsigned long),1,infp);
Read(count,8);
count=count+1;
for(i=1;i<=count;i++)
fread(&Leaf[i],sizeof(char),1,infp);
l=NToBits(2*count-1);
for(i=1;i<=count;i++){
HT[i].lchild=0;
HT[i].rchild=0;
}
for(i=count+1;i<=2*count-1;i++){
HT[i].lchild=(Read(num,l),num);
HT[i].rchild=(Read(num,l),num);
}
}
void HuffmanTree::CreateFromSourceFile()
//由被压缩文件建立Huffman树,将树结构存入编码文件的文件头部中,并求每个字符的Huffman编码
{
Stat();//统计字符出现频度并过滤掉频度为零的字符
//由被压缩文件建立Huffman树
unsigned int i,s1,s2;
for(i=1;i<=count;i++)HT[i].parent=HT[i].lchild=HT[i].rchild=0;
for(i=count+1;i<=2*count-1;i++){//建立Huffman树
Select(i-1,s1,s2); //选择parent为,权值最小的两个结点s1,s2
HT[s1].parent=HT[s2].parent=i;
HT[i].parent=0;HT[i].lchild=s1;HT[i].rchild=s2;
HT[i].weight=HT[s1].weight+HT[s2].weight;
}
//将树结构存入编码文件的文件头部中
unsigned int l;
buf.bits=0; //清空缓冲区
buf.ch=0;
rewind(outfp);
fwrite(&size,sizeof(unsigned int),1,outfp);
Write(count-1,8);
for(i=1;i<=count;i++)
fwrite(&Leaf[i],sizeof(char),1,outfp);
l=NToBits(2*count-1);
for(i=count+1;i<=2*count-1;i++){
Write(HT[i].lchild,l);
Write(HT[i].rchild,l);
}
//求每个字符的Huffman编码
unsigned int start,c,f;
char *cd; //编码临时变量
for(i=1;i<=n;i++)
if(HuffmanCode[i]!=NULL){
delete []HuffmanCode[i]; //释放存储空间
HuffmanCode[i]=NULL;
}
cd=new char[count]; //分配求编码的工作空间
cd[count-1]='\0'; //编码结束符
for(i=1;i<=count;i++){ //逐位求Huffman编码
start=count-1; //编码结束符位置
for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[c].parent) //从叶到根求编码
if(HT[f].lchild==c)cd[--start]='0';
else cd[--start]='1';
HuffmanCode[i]=new char[count-start]; //为第i个字符编码分配空间
strcpy(HuffmanCode[i],&cd[start]); //从cd复制编码到HuffmanCode
}
delete []cd;
}
//Huffman.cpp
#include"Utility.h"
#include"Lk_stack.h"
#include"Huffman.h"
void main()
{
HuffmanTree hf;
char c=0;
while(c!='3')
{
cout<<endl<<"1.Huffman compress.";
cout<<endl<<"2.Huffman decompress.";
cout<<endl<<"3.Exit.";
cout<<endl<<"Please select:";
cin>>c;
switch(c)
{
case '1':
hf.Co
break;
case '2':
hf.UnCode();
}
}
}
六、实验运行情况分析:
1.算法分析:本程序根据huffman树分配代码的方法,将文件中的数据冗余去掉,从而达到压缩文件的目的。Huffman编码本身作为一种冗余量最小的压缩编码,对于本题的压缩而言,能够达到目的,使文件得到压缩。但是对于比较小的字符串文件而言,数据压缩不了多少,所以没有明显看到文件大小的改变。对于huffman树的构造而言,可以有多种算法,但是本程序运用的这种方法,可能不是效率最高的方法,但应该是最好理解的方法。
2.运行结果分析:本程序对于小文件可以达到压缩和解压的目的,但是对于大文件压缩以后却不能解压,因为在写入文件的时候不是一个字符一个字符的写进去的,而是一个数组一个数组写进去的,这样很容易导致程序的错误,本来想一个数组一个数组地写进去可以提高效率,但是却导致了大文件不能解压的错误,所以本程序还需要进行改进,使它的功能更加完善。
3.运行环境分析:程序在本环境下运行,可以对根目录下的文件进行压缩,还可以对计算机其它盘上的文件进行压缩,这就需要在运行的时候注意,在根目录下的文件可以直接输入文件名,但如果被压缩或解压的文件在计算机其它盘上,输入文件名的时候要带上文件的路径。
================================================================================================================================
转载自:http://kxjinfeng.blog.163.com/blog/static/4837699620100511203328/
备注:因为图片不能是站外的,所以部分涉及图片的内容给删除了~点击上面的转载链接可以查看~
================================================================================================================================