n!~(n/e)^n*sqrt(2*pi*n) n趋于无穷
利用斯特林(Stirling)公式求解n!的位数:
易知整数n的位数为[lg10(n)]+1.
用Stirling公式计算n!结果的位数时,可以两边取对数,得:
log10(n!) = log10(2*PI*n)/2+n*log10(n/E);
故n!的位数为
用Stirling公式计算n!结果的位数时,可以两边取对数,得:
log10(n!) = log10(2*PI*n)/2+n*log10(n/E);
故n!的位数为
res=log10(2*PI*n)/2+n*log10(n/E)+1
#include
#include
using namespace std;
const double pi=3.141592653589793239,e=2.7182818284590452354;
double stirling(int n)
{
return 0.5*log10(2*pi*n)+n*log10(n/e);//log10()需要头文件math.h
}
int main()
{
int n;
while(cin>>n)
{
cout<<(int)stirling(n)+1<