n!的长度(stirling公式的应用)

n!~(n/e)^n*sqrt(2*pi*n)    n趋于无穷

利用斯特林(Stirling)公式求解n!的位数:
易知整数n的位数为[lg10(n)]+1.
用Stirling公式计算n!结果的位数时,可以两边取对数,得:
log10(n!) = log10(2*PI*n)/2+n*log10(n/E);
故n!的位数为
res=log10(2*PI*n)/2+n*log10(n/E)+1

#include
   
   
    
    
#include
    
    
     
     
using namespace std;
const double pi=3.141592653589793239,e=2.7182818284590452354;
double stirling(int n)
{
    return 0.5*log10(2*pi*n)+n*log10(n/e);//log10()需要头文件math.h
}
int main()
{
    int n;
    while(cin>>n)
    {
        cout<<(int)stirling(n)+1<
     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值