四种打印材料的区别(PLA、ABS、TPU和PETCF)

  PLA、ABS、TPU和PETCF是三种常见的3D打印材料,它们各有特点和适用场景:

  PLA聚乳酸
  • 特点:PLA由可再生资源(如玉米淀粉)制成,具有良好的生物降解性。打印时无刺激性气味,适合家庭和初学者使用

  • 性能:刚性较高,但韧性和耐热性较差,玻璃化转变温度约为55°C。

  • 应用:适用于制作模型、装饰品和概念验证原型。

  ABS(丙烯腈-丁二烯-苯乙烯)
  • 特点:具有较高的强度和韧性,良好的抗冲击性能和耐热性。

  • 应用:适合制作功能性零件、汽车零件、电子产品外壳等。

  • 打印要求:需要较高的打印温度(220-250°C),打印时可能释放刺鼻气味,需要通风良好的环境,且容易发生翘曲,建议使用加热床。

  TPU热塑性聚氨酯
  • 特点:TPU是一种弹性材料,具有橡胶般的柔韧性。

  • 应用:适用于制作需要弹性和柔韧性的物品,如手机壳、鞋垫、密封件等。

  • 打印要求:打印难度较大,容易出现卡料和堵头的情况,需要调整打印机设置,打印速度较慢。

  PETCF(聚对苯二甲酸乙二醇酯)
  • 特点:结合了PET的透明性和CF(碳纤维)的高强度,耐磨、具有优异的机械性能和耐热性。PET-CF是将碳纤维添加到PET(聚对苯二甲酸乙二醇酯)中的复合材料,旨在提高材料的刚性和强度,同时保持PET的耐化学性和耐热性。

  • 应用:适合制作高强度、轻量化的工业零件,常用于航空航天领域。

  • 打印要求:打印难度较大,价格较高,且可能磨损打印机部件。

序号

设备名称

品牌型号

加工范围

加工材料

软件下载地址

使用指南

用户手册

1

工程级 3D 打印机

太尔时代

/UPBOX+

255(X) x205(Y) x205(Z)mm

ABS 白

https://www.tiertime.cn/software/

版本:UP Studio2 Windows v2.6.75.627

https://cn.tiertime.com/downloads/UP300_User_Manual_CN_V1.3.pdf

UP_BOX_Plus_用户手册_4.8.1_CN.pdf

2

专业级3D打印机

太尔时代

/UP300

255(X)x205(Y) x225(Z)mm

TPU 白

(软的,有弹性,不考虑)

https://www.tiertime.cn/software/

版 本 : UP Studio2

Windows v2.6.75.627

https://cn.tiertime.com/downloads/docs/UP_BOX_Plus_4.8.1_CN.pdf

UP300_安装和使用手册_太尔时代_V1.3.pdf

3

工业级大尺寸高速3D 打印机

太尔时代

/UP400pro

400(X)x350(Y) x370(Z)mm

PETCF 黑 (含碳纤维,强度很高)

https://www.tiertime.cn/software/

版 本 : UP Studio3 Windows V3.3.1

https://www.tiertime.cn/wp-content/uploads/2024/06/UP-Studio-3%E8%AF%B4%E6%98%8E%E4%B9%A6v1.1.zip

UP Studio 3说明书v1.1.pdf

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重阈值,从而提高网络的学习效率预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雾潮燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值