hdu5353Average

枚举第一个人对第二个人的三种操作,

然后这样第i个人必然对第i+1个人按照
1.少一个糖果就从下一个人手中拿一个
2.多一个就给一个给下一个人
3.刚好就是平均数跳过
4.无解

这四种操作贪心即可。

#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
using namespace std;
typedef long long ll;
int a[100010],b[100010];
vector<int>ans;
bool isok(int n,int av)
{
	for(int i=0;i<n;i++)
		b[i]=a[i];
	for(int i=1;i<n;i++)
	{
		int t=b[i]-av,j=(i+1)%n;
		if(t==-1)
		{
			b[i]++;
			b[j]--;
			ans.push_back(j);
			ans.push_back(i);
		}
		else if(t==0)
			continue;
		else if(t==1)
		{
			b[i]--;
			b[j]++;
			ans.push_back(i);
			ans.push_back(j);
		}
		else
			return 0;
	}
	for(int i=0;i<n;i++)
		if(b[i]!=av)
			return 0;
	return 1;
}
void print()
{
	puts("YES");
	cout<<ans.size()/2<<endl;
	for(int i=0;i<ans.size();i+=2)
		cout<<ans[i]+1<<" "<<ans[i+1]+1<<endl;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int n;
		scanf("%d",&n);
		ll sum=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d",a+i);
			sum+=a[i];
		}
		if(sum%n!=0)
		{
			puts("NO");
			continue;
		}
		sum/=n;
		int av=int(sum);
		ans.clear();
		if(isok(n,av))
			print();
		else
		{
			a[0]--;a[1]++;
			ans.clear();
			ans.push_back(0);
			ans.push_back(1);
			if(isok(n,av))
				print();
			else
			{
				a[0]+=2;a[1]-=2;
				ans.clear();
				ans.push_back(1);
				ans.push_back(0);
				if(isok(n,av))
					print();
				else
					puts("NO");;
			}
		}
		
	}
}

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 127    Accepted Submission(s): 16
Special Judge


Problem Description
There are  n  soda sitting around a round table. soda are numbered from  1  to  n  and  i -th soda is adjacent to  (i+1) -th soda,  1 -st soda is adjacent to  n -th soda.

Each soda has some candies in their hand. And they want to make the number of candies the same by doing some taking and giving operations. More specifically, every two adjacent soda  x  and  y  can do one of the following operations only once:
1.  x -th soda gives  y -th soda a candy if he has one;
2.  y -th soda gives  x -th soda a candy if he has one;
3. they just do nothing.

Now you are to determine whether it is possible and give a sequence of operations.
 

Input
There are multiple test cases. The first line of input contains an integer  T , indicating the number of test cases. For each test case:

The first contains an integer  n   (1n105) , the number of soda.
The next line contains  n  integers  a1,a2,,an   (0ai109) , where  ai  denotes the candy  i -th soda has.
 

Output
For each test case, output "YES" (without the quotes) if possible, otherwise output "NO" (without the quotes) in the first line. If possible, then the output an integer  m (0mn)  in the second line denoting the number of operations needed. Then each of the following  m  lines contain two integers  x  and  y   (1x,yn) , which means that  x -th soda gives  y -th soda a candy.
 

Sample Input
  
  
3 6 1 0 1 0 0 0 5 1 1 1 1 1 3 1 2 3
 

Sample Output
  
  
NO YES 0 YES 2 2 1 3 2
 

Source

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值