UVA 12931 Common Area

题意:给出两个多边形,判断是否有公共面积。

做法:很显然若不重合,必然有一个多边形有边穿过或就在另一个多边形里面。问题就很简单了。



#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
int sgn(double x)
{
	return fabs(x)<eps?0:x<0?-1:1;
}
struct point
{
	double x,y;
	point(){}
	point(double x,double y){this->x=x;this->y=y;}
	point operator +(point a){return point(x+a.x,y+a.y);}
	point operator -(point a){return point(x-a.x,y-a.y);}
	double operator *(point a){return x*a.x + y*a.y;}
	double operator /(point a){return x*a.y-y*a.x;}
	bool operator <(point a)const{return x!=a.x?x<a.x:y<a.y;}
};
struct line
{
	point s,e;
	line(){}
	line(point s,point e){this->s=s;this->e=e;}
	//????????
	//?????0??????,?1????,?0????,?2???
	//???????2?,??????
	pair<int,point> operator *(line a)
	{
		point res = s;
		if(sgn((s-e)/(a.s-a.e))==0)
		{
			if(sgn((s-a.e)/(a.s-a.e))==0)
				return make_pair(0,res);//??
			return make_pair(1,res);//??
		}
		double t=(s-a.s)/(a.s-a.e)/((s-e)/(a.s-a.e));
		res.x+=(e.x-s.x)*t;
		res.y+=(e.y-s.y)*t;
		return make_pair(2,res);
	}
};
//a?b??c 
point transxy(point a,point b,double c)
{
	point t1=a-b,t2=point(sin(c),cos(c));
	return b+point(t1/t2,t1*t2);
}
//?????
double dis(point a,point b)
{
	point t=a-b;
	return sqrt(t*t);
}
//??????
bool inter(line l1,line l2)
{
	return
	max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
	max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
	max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
	max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
	sgn((l2.s-l1.e)/(l1.s-l1.e))*sgn((l2.e-l1.e)/(l1.s-l1.e))<=0&&
	sgn((l1.s-l2.e)/(l2.s-l2.e))*sgn((l1.e-l2.e)/(l2.s-l2.e))<=0;
}
//????l1???l2????
bool seg_inter_line(line l1,line l2) 
{
	return sgn((l2.s-l1.e)/(l1.s-l1.e))*sgn((l2.e-l1.e)/(l1.s-l1.e))<=0;
}
//??????????res,?????????
point point_to_line(point p,line l)
{
	point res;
	double t=(p-l.s)*(l.e-l.s)/((l.e-l.s)*(l.e-l.s));
	res.x=l.s.x+(l.e.x-l.s.x)*t;
	res.y=l.s.y+(l.e.y-l.s.y)*t;
	return res;
}
//??????????????????
point point_to_seg(point p,line l)
{
	point res;
	double t =(p-l.s)*(l.e-l.s)/((l.e-l.s)*(l.e-l.s));
	if(t>=0&&t<=1)
	{
		res.x=l.s.x+(l.e.x - l.s.x)*t;
		res.y=l.s.y+(l.e.y - l.s.y)*t;
	}
	else
		res=dis(p,l.s)<dis(p,l.e)?l.s:l.e;
	return res;
}
//???????
double calc_area(point p[],int n)
{
	double res = 0;
	for(int i = 0;i < n;i++)
	res += (p[i]/p[(i+1)%n])/2;
	return fabs(res);
}
//???????
bool onseg(point p,line l)
{
	return
	sgn((l.s-p)/(l.e-p))==0&&
	sgn((p.x-l.s.x)*(p.x-l.e.x))<=0&&
	sgn((p.y-l.s.y)*(p.y-l.e.y))<=0;
}
//?????????
//???????,????????(??????????<0??>0)
int inconvexpoly(point a,point p[],int n)
{
	for(int i = 0;i < n;i++)
	{
		if(sgn((p[i]-a)/(p[(i+1)%n]-a))<0)return 1;//???? 
		if(onseg(a,line(p[i],p[(i+1)%n])))return 0;//?????
	}
	return -1;//????
}
//??????????
int point_in_poly(point a,point p[],int n)
{
	int wn=0;
	for(int i=0;i<n;i++)
	{
		if(onseg(a,line(p[i],p[(i+1)%n])))return 0;//????? 
		int t1=sgn((p[(i+1)%n]-p[i])/point(a-p[i]));
		int t2=sgn(p[i].y-a.y),t3=sgn(p[(i+1)%n].y-a.y);
		if(t1>0&&t2<=0&&t3>0) wn++;
		if(t1<0&&t3<=0&&t2>0) wn--;
	}
	return wn!=0?-1:1;//-1???,1??? 
}
//??????
//?????
//??????????????????
//????1~n-1
bool isconvex(point p[],int n)
{
	bool s[3];
	memset(s,false,sizeof(s));
	for(int i=0;i<n;i++)
	{
		s[sgn((p[(i+1)%n]-p[i])/(p[(i+2)%n]-p[i]))+1]=1;
		if(s[0] && s[2])return 0;
	}
	return 1;
}
//??
int covexhull(point p[],int n,point ch[])
{
	sort(p,p+n);
	int m=0;
	for(int i=0;i<n;i++)
	{
		while(m>1&&sgn((ch[m-1]-ch[m-2])/(p[i]-ch[m-2]))<=0)
			m--;
		ch[m++]=p[i];
	}
	int k=m;
	for(int i=n-2;i>-1;i--)
	{
		while(m>k&&sgn((ch[m-1]-ch[m-2])/(p[i]-ch[m-2]))<=0)
			m--;
		ch[m++]=p[i];
	}
	if(n>1)
		m--;
	return m;
}
point bx[2][110];
int main()
{
	int n,m,cs=0;
	while(scanf("%d",&n)!=EOF)
	{
		for(int i=0;i<n;i++)
			scanf("%lf%lf",&bx[0][i].x,&bx[0][i].y);
		scanf("%d",&m);
		for(int i=0;i<m;i++)
			scanf("%lf%lf",&bx[1][i].x,&bx[1][i].y);
		bool flag=0;
		for(int i=0;!flag&&i<n;i++)
		{
			line a=line(bx[0][i],bx[0][(i+1)%n]);
			vector<point>bb;
			bb.push_back(bx[0][i]);
			bb.push_back(bx[0][(i+1)%n]);
			for(int j=0;j<m;j++)
			{
				line b=line(bx[1][j],bx[1][(j+1)%m]);
				if(!inter(a,b))
					continue; 
				pair<int,point> res=a*b;
				if(res.first==2)
					bb.push_back(res.second);
			}
			sort(bb.begin(),bb.end());
			int len=bb.size();
			for(int j=0;!flag&&j<len;j++)
			{
				point t=bb[j]+bb[(j+1)%len];
				t.x/=2;t.y/=2;
				if(point_in_poly(bb[j],bx[1],m)<0||point_in_poly(t,bx[1],m)<0)
					flag=1;
			}
		}
		for(int i=0;!flag&&i<m;i++)
		{
			line a=line(bx[1][i],bx[1][(i+1)%m]);
			vector<point>bb;
			bb.push_back(bx[1][i]);
			bb.push_back(bx[1][(i+1)%m]);
			for(int j=0;j<n;j++)
			{
				line b=line(bx[0][j],bx[0][(j+1)%n]);
				if(!inter(a,b))
					continue; 
				pair<int,point> res=a*b;
				if(res.first==2)
					bb.push_back(res.second);
			}
			sort(bb.begin(),bb.end());
			int len=bb.size();
			for(int j=0;!flag&&j<len;j++)
			{
				point t=bb[j]+bb[(j+1)%len];
				t.x/=2;t.y/=2;
				if(point_in_poly(bb[j],bx[0],n)<0||point_in_poly(t,bx[0],n)<0)
					flag=1;
			}
		}
		if(!flag)
		{
			bool flag1=0;
			for(int i=0;!flag1&&i<n;i++)
				if(point_in_poly(bx[0][i],bx[1],m)==1)
					flag1=1;
			if(!flag1)
				flag=1;
		}
		printf("Case %d: %s\n",++cs,flag?"Yes":"No");
	}
}



Given two simple polygons, your task is to determine whether they have a non-empty common area.
Note that the two rectangles in gure (a) share a segment, but no common area at all.
By \simple polygon", we mean the polygons will not be self-intersecting or self-touching, and will
not have duplicated vertices or adjacent collinear segments.
Note: be sure to test your program with many special cases.
Input
There will be at most 100 test cases. Each test case contains two lines, one for each polygon. Each
polygon begins with an integer n (3 n 100), the number of vertices, then n pairs of integers (x; y)
(

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值