"""
@author: JacksonKim
@filename: k_fold_cross_validation.py
@start: 2021/1/29
@end: 2021/1/29
"""
import numpy as np
'''
1. k折交叉验证法就是将数据集D划分为k个大小相似的互斥子集,每个子集都尽可能保持数据分布的一致性
2. 每次用k-1个子集的并集作为训练集,余下的那个子集作为测试集,从而获得k组训练/测试集
3. 交叉验证法评估结果的稳定性和保真性很大程度上取决于k的取值
4. 数据集D划分成k个子集时有多种划分方法,一般进行p次随机不同划分,然后进行p次交叉验证
'''
# 随机产生我们的数据集
x = np.random.randint(-10, 10, 100) # 前两个参数表示范围,第三个参数表示个数
data_set = []
# 设置k值
k = 5
# 对数据集进行划分
for i in range(k):
tmp = []
j = i
while j < len(x):
tmp.append(x[j])
j = j + k
data_set.append(tmp)
# 打印数据集
print("data set:")
for i in range(k):
print(data_set[i])
# 划分k组训练/测试集
for i in range(k):
test_set = data_set[i]
train_set = []
for j in range(k):
if i != j:
train_set.append(data_set[j])
print()
print("processing fold #", i+1)
# 打印训练集
print("train set: ")
for j in range(k-1):
print(train_set[j])
# 打印测试集
print("test set: ", test_set)
机器学习之数据集划分-k折交叉验证法(k-fold cross validation)
最新推荐文章于 2025-02-19 16:56:19 发布