大数据
文章平均质量分 66
chary8088
这个作者很懒,什么都没留下…
展开
-
开源|LightGBM:三天内收获GitHub 1000+ 星
原创 2017-01-05 LightGBM 微软研究院AI头条【导读】不久前微软DMTK(分布式机器学习工具包)团队在GitHub上开源了性能超越其他boosting工具的LightGBM,在三天之内GitHub上被star了1000+次,fork了200+次。知乎上有近千人关注“如何看待微软开源的LightGBM?”问题,被评价为“速度惊原创 2017-01-10 19:04:50 · 3369 阅读 · 0 评论 -
深度学习攒机:要高性能也要很便宜
一直使用VirtualBox安装的ubuntu来玩各种开源的代码库,也没觉得什么不爽的,更重要的是windows的各种工具软件和银行也能同时使用;要说virtualBox+ubuntu的缺点就是:1:硬盘空间老是捉襟见肘,不敢放开放大批量的数据;2 和硬件结合不方便,比如opencv或其他caffe想使用摄像头,这个就要通过virtualBox的菜单栏手动设置,而且还要必须手动操作;这点就是瓶颈:...原创 2018-04-11 10:19:43 · 7421 阅读 · 13 评论 -
基于深度学习的人脸识别系统,识别率高达99.7%
基于深度学习的人脸识别人脸定位和crop特征提取和相似度对比余弦距离:0.74451 ,准确率相当高了欢迎大家加入我们的QQ群,看下面原创 2017-12-08 13:03:48 · 9004 阅读 · 0 评论 -
tensorflow CUDA 9.0安装成功
berli@berli-dev:~/tensorflow$ bazel-bin/tensorflow/examples/label_image/label_image2017-12-18 00:04:16.581436: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions tha...原创 2017-12-18 00:11:40 · 2735 阅读 · 7 评论 -
深度学习攒机配置
显示器:是用乐视电视 50吋主板:华南x79CPU: E5 2660 V2 10核20线程 至强CPU顶级配置,可以秒杀I5系列全家,秒I7内存:16G recc服务器内存价格:和主板是套装价格:1798硬盘:320G 普通硬盘价格:85元显卡:技嘉1060 6G G1 ,1280个处理核心,显存6G价格:1699元机箱:ATX标准机箱价格:59.9电源:铂爵500W价格:65.9元合计:74...原创 2017-11-24 14:36:38 · 1257 阅读 · 0 评论 -
计算两向量的欧式距离,余弦相似度
来自:http://www.mtcnn.com>>> import numpy>>> vec1=[[1,1,1],[2,2,2]]>>> vec2=[[2,2,2],[1,1,1]]>>> vec1=numpy.array(vec1)>>> vec2=numpy.array(vec2)&a原创 2017-07-06 17:42:18 · 24938 阅读 · 2 评论 -
caffe:使用C++来提取任意一张图片的特征
0x00关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在deploy.prototxt中指定图片的位置,很不方便。如果想要使用opencv来读取一个图片,然后用caffe训练好的model提取特征,就需要对输入层进行改写。另外官方例程默认的输出是le原创 2017-07-14 11:28:18 · 1532 阅读 · 0 评论 -
深度学习利器: TensorFlow系统架构及高性能程序设计
2015年11月9日谷歌开源了人工智能平台TensorFlow,同时成为2015年最受关注的开源项目之一。经历了从v0.1到v0.12的12个版本迭代后,谷歌于2017年2月15日发布了TensorFlow 1.0 版本,并同时在美国加州山景城举办了首届TensorFlow Dev Summit会议。TensorFlow 1.0及Dev Summit(2017)回顾 和以往版本相转载 2017-05-04 10:32:18 · 1860 阅读 · 0 评论 -
tensorflow预处理:数据标准化的几种方法
数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待。下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单):1、(0,1...原创 2018-08-09 19:39:21 · 18054 阅读 · 0 评论