计算两向量的欧式距离,余弦相似度

余弦相似度和欧式距离在机器学习中用于计算相似度,但各有侧重。余弦相似度关注向量间夹角,适用于方向比较;欧式距离衡量点之间距离,适合位置差异。两者在归一化后可将相似度范围限定在[0,1]。例如,商品价格变化趋势可能有高相似度,而实际价格可能存在大差距,体现不同相似度类型的应用。" 79751500,1351381,JMeter教程:HTTP接口测试与性能测试初探,"['接口测试', '性能测试', 'JMeter', '自动化测试', '负载测试']
来自:http://www.mtcnn.com
>>> import numpy
>>> vec1=[[1,1,1],[2,2,2]]
>>> vec2=[[2,2,2],[1,1,1]]
>>> vec1=numpy.array(vec1)
>>> vec2=numpy.array(vec2)
>>> vec1
array([[1, 1, 1],
       [2, 2, 2]])
>>> vec2
array([[2, 2, 2],
       [1, 1, 1]])
>>> dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))  
>>> dist
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值