给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N
(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2
#include<bits/stdc++.h>
using namespace std;
int z[50];
int p[40];
struct node {
int left ;
int right;
}a[100];
int build(int la,int ra,int lb,int rb) { //中序:la,ra 先序:lb,rb
if(la > ra)
return -1;
int rt = p[lb];//根为先序的第一个
int pos1 = la;
while(z[pos1]!=rt) pos1++;
int pos2 = pos1-la;
a[rt].left = build(la,pos1-1,lb+1,lb+pos2);
a[rt].right = build(pos1+1,ra,lb+pos2+1,rb);
return rt;
}
void bfs(int x) {
queue<int> q;
vector<int> v;
q.push(x);
while(!q.empty()) {
int l = q.front();//访问队首元素
q.pop();//弹出队首元素
v.push_back(l);//存到数列中
if(a[l].right != -1) { //先输出右子树
q.push(a[l].right);
}
if(a[l].left != -1) { //再输出左子树
q.push(a[l].left);
}
}
for(int i=0;i<v.size();i++) {
cout<<v[i]<<" ";
}
cout << endl;
}
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++) {
cin>>z[i];
}
for(int i=0;i<n;i++) {
cin>>p[i];
}
int rt = build(0,n-1,0,n-1);
bfs(rt);
return 0;
}