tensor的不同维度种类

本文介绍了在PyTorch中处理不同形状的张量,如0维标量、1维向量和2维矩阵,展示了如何获取张量的维度、元素值以及进行矩阵乘法和内积操作。
摘要由CSDN通过智能技术生成

几种形状的tensor

0维标量(scalar),1维向量(vector),二维矩阵(matrix),3维以上n维张量

scalar

import torch
torch.__version__
from torch import tensor
x=tensor(42)
x

tensor(42)
x.dim()
0
x.item()
42

vector

y=tensor([1.5,-0.5,3.0])
y
tensor([ 1.5000, -0.5000,  3.0000])
y.dim()
1
y.size()
torch.Size([3])

matrix

m=tensor([[1.,2.],[2.,4.]])
m
tensor([[1., 2.],
        [2., 4.]])
m.matmul(m)#功能是将矩阵m与自身进行矩阵乘法运算。该运算将矩阵m的每一行与m的每一列进行乘积,并将结果相加以得到最终的结果。在这个例子中,矩阵m是一个2x2的矩阵,结果将会是一个2x2的矩阵。
tensor([[ 5., 10.],
        [10., 20.]])
#同上
tensor([1.,0.]).matmul(m)
tensor([1., 2.])
m*m#内积
tensor([[ 1.,  4.],
        [ 4., 16.]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值