✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
- 海水表面温度是研究海 - 空水汽与热量交换的重要参数,其变化影响珊瑚白化现象,是监测珊瑚礁是否发生珊瑚白化的重要指标。目前热红外遥感海表温度产品分辨率多为公里级,对于高空间分辨率的 Landsat 8 TIRS 热红外数据缺乏可靠准确的海表温度反演算法,难以满足珊瑚礁海表温度精细遥感监测需求。
- 为提出适合南海珊瑚礁区高分辨率海表温度热红外遥感反演的有效方法,本文以南海北部湾涠洲岛区域为研究区,基于 Landsat 8 卫星遥感数据,对比不同海表温度反演算法的精度及对参数的敏感性,筛选最适合南海珊瑚礁区的算法,并进行改进和应用。
(2)海表温度反演算法的对比与筛选
- 对比分析了辐射方程传输法(RTM)、单窗算法(MW)、单通道算法(SC)、线性劈窗算法(SW_1)和非线性劈窗算法(SW_2)等海表温度反演算法的反演精度及其对参数的敏感性。
- 与涠洲岛附近海域实测海表温度对比结果表明,SW_2 与 SC 算法精度较高,RTM 与 SW_1 算法次之,MW 算法精度较低。与 AVHRR SST 产品数据对比结果显示,两种劈窗算法精度较高,SC 算法精度略低,RTM 与 MW 算法精度较低。
- 算法间对比结果表明,几种海表温度反演算法结果总体变化趋势接近,SW_1 算法反演结果平均值最高,SW_2、SC、RTM 依次降低,MW 算法最低。参数敏感性分析结果显示,RTM 算法敏感性最高,SW_1 与 MW 算法次之,SC 与 SW_2 算法敏感性较低。
- 综合对比,SW_2 算法在精度和参数敏感性方面表现最佳,改进后的 SW_2 算法是最适合南海珊瑚礁区的 Landsat 8 TIRS 海表温度反演算法。
(3)海表温度反演算法的应用与分析
- 将改进后的 SW_2 算法应用于南海南沙信义礁及其周边海域海表温度的遥感反演,并对该海域海表温度的空间和时间分布特征进行统计和分析。
- 结果表明该区域海表温度具有明显季节性,五月月平均海表温度为全年最高,约 305.0K,二月月平均海表温度为全年最低,约 301.7K,年均海表温度变化约 3.3K,变化幅度较小。
- 信义礁潟湖与周边海域的温度差存在夏季高冬季低的现象,但礁盘区域与周边海域的温差季节性变化不明显。推测夏季海表面层热量在周边海域传递到下层,而潟湖水深有限无法将热量传递到更深区域,导致潟湖区域水温更高。
dataMatrix = rand(100, 100); % 100x100 的随机矩阵模拟遥感数据
% 一些参数设置
resolution = 10; % 假设分辨率为 10 米
% 数据处理步骤
filteredData = medfilt2(dataMatrix); % 中值滤波处理
% 可视化原始数据和处理后的数据
figure;
subplot(1,2,1);
imagesc(dataMatrix);
title('原始遥感数据');
colorbar;
subplot(1,2,2);
imagesc(filteredData);
title('处理后的遥感数据');
colorbar;
% 进一步的数据分析
meanValue = mean(filteredData(:));
disp(['处理后数据的平均值:', num2str(meanValue)]);
maxValue = max(filteredData(:));
disp(['处理后数据的最大值:', num2str(maxValue)]);
minValue = min(filteredData(:));
disp(['处理后数据的最小值:', num2str(minValue)]);
% 假设进行一些分类处理
threshold = meanValue;
classifiedData = zeros(size(filteredData));
classifiedData(filteredData > threshold) = 1;
classifiedData(filteredData <= threshold) = 0;
% 可视化分类结果
figure;
imagesc(classifiedData);
title('分类后的遥感数据');
colorbar;