电子器件相变散热结构优化设计毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)拓扑优化方法在相变散热结构设计中的应用

在大功率电子器件的热管理中,散热结构的设计至关重要。传统的散热结构,如直肋热沉,虽然在一定程度上能够满足散热需求,但其换热效率往往受到限制。相变材料(PCM)由于其能够在吸收或释放热量时发生相变,从而在不增加系统重量、尺寸和功耗的前提下,有效地管理热瞬变,成为了一种极具潜力的散热介质。然而,相变材料的低导热性限制了其在实际应用中的效果。为了克服这一挑战,我们引入了拓扑优化方法。

拓扑优化是一种先进的设计方法,它允许设计师在设计空间内进行详尽的探索,以找到最优的散热结构。这种方法通过优化材料的分布和形状,可以显著提高散热结构的换热效率。在本研究中,我们以天线热耗模块的简化模型为研究对象,通过拓扑优化方法对热沉盒体进行结构优化。

在优化过程中,我们设定了特定的目标函数和约束条件,以确保优化后的结构能够在保证强度和稳定性的同时,最大化其换热能力。通过多次迭代计算,我们得到了一个具有复杂形状和结构的热沉盒体。这个优化后的结构不仅具有更大的散热面积,而且其内部通道的设计也更加合理,能够有效地促进相变材料的流动和换热。

数值模拟仿真结果表明,拓扑优化后的相变热沉结构相比传统的直肋相变热沉结构具有更加优越可靠的换热能力。在相同的加热条件下,优化后的结构能够更快地吸收和释放热量,从而有效地降低电子器件的温度。

此外,我们还发现相变材料融化时产生的自然对流会对拓扑优化结构和拓扑优化热沉盒体的换热能力产生影响。为了进一步提高换热效率,我们对优化后的结构进行了几何重构,以更好地适应自然对流的影响。数值模拟结果表明,经过几何重构后的结构在换热能力上几乎保持不变,这证明了我们的优化方法是稳定和可靠的。

(2)实验验证与优化结构的性能评估

为了验证拓扑优化结构的性能,我们进行了一系列的实验。首先,我们测定了空腔拓扑优化热沉结构和填充硬脂酸的拓扑优化热沉结构对相同功率的高温陶瓷片的热管理温控效果。实验结果表明,填充硬脂酸的拓扑优化结构能够显著降低电子芯片的温升速率,并延长达到安全工作温度上限的时间。这证明了相变材料与拓扑优化结构的结合能够有效地提高散热效率。

接下来,我们对比了填充硬脂酸的拓扑优化热沉结构与填充硬脂酸的直肋结构对相同功率的高温陶瓷片的热管理温控效果。实验记录的热源温度曲线和两种热沉结构加热终了时刻的液相率变化情况都证明了拓扑优化结构在热量传输速率与热管理方面的优秀能力。在相同的加热负载下,拓扑优化热沉结构相比直肋热沉结构具有将热源温度降低9℃的能力。这进一步验证了我们的优化方法在散热结构设计中的有效性。

在实验过程中,我们还发现了一些有趣的现象。例如,在加热初期,由于相变材料尚未开始融化,两种结构的散热效果相差不大。然而,随着加热的进行,相变材料开始融化并吸收热量,此时拓扑优化结构的优势逐渐显现。此外,我们还观察到在加热过程中,相变材料的融化速度和液相率的变化与热源温度的变化密切相关。这为我们进一步理解相变材料的热管理机理和优化散热结构设计提供了有益的启示。

(3)拓扑优化结构在不同输入功率下的抗热冲击能力评估

为了评估拓扑优化结构在不同输入功率下的抗热冲击能力,我们进行了一系列不同功率下的加热实验。实验结果表明,添加了相变材料的拓扑优化结构具有优秀的抗热冲击能力。在规定的加热时间内,即使输入功率较大,高温陶瓷片的温度也能够保持在安全工作温度以下。

此外,我们还发现随着输入功率的增加,拓扑优化结构的散热效率也在不断提高。这可能是由于在更高的输入功率下,相变材料的融化速度更快,从而能够更快地吸收和释放热量。然而,当输入功率超过一定范围时,拓扑优化结构的散热效率将趋于饱和。因此,在实际应用中需要根据具体的热管理需求选择合适的输入功率。

在实验过程中,我们还发现了一些可能影响拓扑优化结构抗热冲击能力的因素。例如,相变材料的种类和性质、热沉结构的材料和尺寸等。这些因素都可能对拓扑优化结构的散热效率和抗热冲击能力产生影响。因此,在未来的研究中需要进一步探索这些因素对拓扑优化结构性能的影响,并对其进行优化和改进。

  
% 初始化参数  
num_elements = 100; % 设计空间的元素数量  
num_iterations = 50; % 优化迭代次数  
initial_temp = 300; % 初始温度(K)  
power_input = 100; % 输入功率(W)  
pcm_melting_point = 350; % 相变材料的熔点(K)  
pcm_latent_heat = 200000; % 相变材料的潜热(J/kg)  
pcm_density = 900; % 相变材料的密度(kg/m^3)  
pcm_thermal_conductivity = 0.2; % 相变材料的导热系数(W/m·K)  
  
% 初始化设计变量(元素密度)  
design_variables = rand(num_elements, 1); % 随机初始化设计变量  
  
% 优化循环  
for iter = 1:num_iterations  
    % 计算温度分布  
    temperature_distribution = calculate_temperature_distribution(design_variables, initial_temp, power_input, pcm_melting_point, pcm_latent_heat, pcm_density, pcm_thermal_conductivity);  
      
    % 计算目标函数(温度标准差)  
    objective_function = std(temperature_distribution);  
      
    % 计算梯度(敏感度分析)  
    [gradients, sensitivities] = calculate_gradients(design_variables, temperature_distribution, pcm_thermal_conductivity);  
      
    % 更新设计变量(基于梯度下降法)  
    design_variables = design_variables - learning_rate * gradients;  
      
    % 对设计变量进行约束处理(确保在0到1之间)  
    design_variables = max(min(design_variables, 1), 0);  
      
    % 打印当前迭代信息  
    fprintf('Iteration %d: Objective Function = %.4f\n', iter, objective_function);  
end  
  
% 输出优化后的设计变量  
disp('Optimized Design Variables:');  
disp(design_variables);  
  
% 辅助函数:计算温度分布  
function temperature_distribution = calculate_temperature_distribution(design_variables, initial_temp, power_input, pcm_melting_point, pcm_latent_heat, pcm_density, pcm_thermal_conductivity)  
    % 这里应该包含详细的温度分布计算过程,但为简化起见,我们直接返回一个随机温度分布  
    temperature_distribution = initial_temp + rand(num_elements, 1) * (pcm_melting_point - initial_temp) / 2;  
end  
  
% 辅助函数:计算梯度  
function [gradients, sensitivities] = calculate_gradients(design_variables, temperature_distribution, pcm_thermal_conductivity)  
    % 这里应该包含详细的梯度计算过程,但为简化起见,我们直接返回一个随机梯度  
    gradients = rand(num_elements, 1);  
    sensitivities = rand(num_elements, 1); % 敏感度分析的结果,这里仅为示例  
end  
  
% 学习率(梯度下降法的步长)  
learning_rate = 0.01;  
  
% 注意事项:  
% 1. 上述代码仅为示例,实际应用中需要详细实现温度分布计算和梯度计算。  
% 2. 学习率的选择对优化结果有很大影响,需要根据具体问题进行调整。  
% 3. 优化结果可能受到多种因素的影响,如初始条件、约束条件等,需要进一步验证和调整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值