历史文化遗址的生态敏感性与空间区划研究毕业论文【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)历史文化遗址空间分布格局分析

历史文化遗产是不可替代性、不可再生性、唯一性的景观资源,是展现一个国家和民族的光荣文化的独特载体。如何保护好历史文化遗址及其环境,使其可持续利用,是当今亟待探讨和解决的科学问题。吐鲁番是全国首批历史文化名城,既是历史文化资源丰富多彩的地区,又是典型的社会经济快速发展而生态退化严重的地区。在自然和人文双重作用下,吐鲁番历史文化遗产的原有历史风貌、传统格局也遭受着不同程度的破坏。特别是在文化遗产带动的文化产业成为当地经济发展重要支柱的背景下,与历史文化遗产相关的资源环境动态监测和保护正在成为区域社会经济发展面临的重要挑战。

  • 分析评价指标体系与方法框架

    • 定性定量集成:本文提出了定性定量集成的干旱半干旱区历史文化遗产空间分布格局分析评价指标体系与方法框架。该框架综合应用了区位分析、空间关联、空间统计、空间聚类、空间自相关等模型,实现了对历史文化遗产空间分布的多维度分析。
    • 数据来源:利用研究区的DEM数据、遥感影像、土地利用数据等多源数据,提取历史文化遗址格局相关因子,包括地形、水系、道路、水源等。这些因子对吐鲁番历史文化遗产的分布具有重要影响。
    • 时空变化规律:通过对这些因子的定量分析,研究了吐鲁番历史文化遗产的空间分布规律。结果表明,地形因素(如高程、坡度、坡向)对古遗址的空间分布具有显著影响,导致古遗址空间分布分散且规模较小。水系和道路对区内遗址点的空间分布有很大影响,遗址点距离道路、水系越远,分布密度越低。在水源条件上,干旱少雨、水资源极度缺乏的干旱区古遗址在空间分布上具有明显的水源指向性。但在海拔相对较低、植被相对丰富、坡度较小、地表与地下水资源比较丰富的平坦地势区域,古遗址在空间形态上呈现密集分布的特点。
  • 研究结果

    • 高程影响:高程对古遗址的空间分布影响显著,高程较低的区域遗址分布较为集中,而高程较高的山区遗址分布较为稀疏。
    • 坡度和坡向:坡度和坡向也是影响古遗址分布的重要因素。坡度较小的区域遗址分布较多,坡度较大的区域遗址分布较少。坡向对遗址分布也有一定影响,阳坡遗址分布较多,阴坡遗址分布较少。
    • 水系和道路:水系和道路对古遗址的分布有显著影响。靠近水系和道路的区域遗址分布较为密集,远离水系和道路的区域遗址分布较为稀疏。
    • 水源指向性:在干旱少雨的地区,古遗址的分布具有明显的水源指向性,靠近水源的区域遗址分布较多。

(2)历史文化遗址生态敏感性评价

历史文化遗址的保护不仅需要考虑其自身的价值,还需要考虑其所在区域的生态敏感性。本文建立了综合考虑自然环境因素和人类活动影响的历史文化遗址生态敏感性评价模型和区划方案,提高了历史文化遗产保护区划的科学性,实现了历史文化遗址保护和区域生态建设的多目标协同。

  • 生态敏感性评价模型

    • 敏感性因子:本文选取了8个敏感性因子,包括地形坡度、海拔高度、土壤侵蚀、植被覆盖度、水体分布、道路密度、人口密度和土地利用类型。这些因子通过高精度的地形数据和生态环境调查资料获得。
    • 模型构建:利用遥感和GIS技术,建立了基于这些敏感性因子的生态敏感性评价模型。通过空间分析和叠加分析,计算每个因子的权重,最终生成生态敏感性评价图。
    • 结果分析:结果表明,研究区历史文化遗址生态总体敏感性较高。敏感性从高至低分别占研究区总遗址的33.98%(140处遗址)、19.66%(81处)、24.51%(101处)、11.17%(46处)和10.68%(44处)。通过对吐鲁番市区遗址点生态敏感性分析发现,研究区内93.15%的等级遗址、89.32%的类别遗址处在敏感状态,容易受各种人类和自然因素作用而产生明显退化或破坏。
  • 区划方案

    • 分区原则:基于生态敏感性评价结果,本文提出了历史文化遗址的分类、分级、分区保护建议。将研究区划分为严格保护区、重点保护区、重要保护区、限制开发区和适度开发区。
    • 保护措施:严格保护区主要保护生态敏感性最高、历史价值最高的遗址,禁止一切开发建设活动;重点保护区保护生态敏感性较高、历史价值较高的遗址,限制开发建设活动;重要保护区保护生态敏感性一般、历史价值较高的遗址,允许有限的旅游开发活动;限制开发区保护生态敏感性较低、历史价值一般的遗址,允许适度的旅游开发活动;适度开发区保护生态敏感性最低、历史价值一般的遗址,允许较大的旅游开发活动。

(3)历史文化遗址保护与开发对策

本文系统开展了吐鲁番历史文化遗产分布格局、地理因子影响、人类活动影响、生态敏感性评价和保护区划的研究工作,提出了针对不同分区的保护措施,研究成果对于“一带一路”文化遗产集中区保护与开发具有重要的参考价值。

  • 分区保护措施

    • 严格保护区:严格保护区内禁止一切开发建设活动,重点保护遗址的原貌和生态环境。加强日常管理和监测,防止人为破坏。
    • 重点保护区:重点保护区内限制开发建设活动,允许必要的保护性设施建设。加强对游客的管理,限制游客数量,减少对遗址的影响。
    • 重要保护区:重要保护区内允许有限的旅游开发活动,但必须严格控制开发强度和规模。加强遗址的修复和保护工作,提高遗址的展示效果。
    • 限制开发区:限制开发区内允许适度的旅游开发活动,但必须遵循生态保护的原则。合理规划旅游线路和设施,减少对遗址和生态环境的影响。
    • 适度开发区:适度开发区内允许较大的旅游开发活动,但必须严格遵守环境保护法规。加强环境监管,确保旅游开发与生态保护相协调。
  • 城市化背景下的保护对策

    • 协调新型城镇化:结合吐鲁番城市化发展,重点研究了城市化背景下的历史文化资源保护对策。建议在城市规划中充分考虑历史文化遗址的保护需求,合理布局城市功能区,避免对遗址造成破坏。
    • 历史文化遗址保护:加强对历史文化遗址的保护力度,建立健全保护机制,制定详细的保护规划和管理措施。加强对遗址周边环境的整治,改善遗址的保护条件。
    • 生态建设:在保护历史文化遗址的同时,注重区域生态建设。通过植树造林、水土保持等措施,改善生态环境,提高区域的生态承载力。

 

 
import numpy as np
import rasterio
from rasterio.enums import Resampling
import matplotlib.pyplot as plt

# 读取DEM数据
dem_file = 'path_to_dem_image.tif'
dem = rasterio.open(dem_file).read(1)

# 读取遥感影像
rs_file = 'path_to_remote_sensing_image.tif'
rs = rasterio.open(rs_file).read(1)

# 读取土地利用数据
lu_file = 'path_to_land_use_image.tif'
lu = rasterio.open(lu_file).read(1)

# 计算坡度
def calculate_slope(dem):
    from scipy.ndimage import sobel, generic_gradient_magnitude
    slope = generic_gradient_magnitude(dem, sobel)
    return slope

# 计算植被覆盖度
def calculate_vegetation_cover(rs):
    ndvi = (rs[3] - rs[0]) / (rs[3] + rs[0])  # 使用近红外和红光波段计算NDVI
    return ndvi

# 计算水体分布
def calculate_water_distribution(rs):
    mndwi = (rs[1] - rs[0]) / (rs[1] + rs[0])  # 使用绿光和近红外波段计算MNDWI
    return mndwi

# 计算道路密度
def calculate_road_density(lu):
    road_density = (lu == 2).astype(np.float32)  # 假设土地利用类型2表示道路
    return road_density

# 计算人口密度
def calculate_population_density(pop_file):
    pop = rasterio.open(pop_file).read(1)
    return pop

# 计算生态敏感性
def calculate_ecological_sensitivity(slope, ndvi, mndwi, road_density, pop_density):
    weights = np.array([0.2, 0.2, 0.2, 0.2, 0.2])  # 各因子权重
    sensitivity = (slope * weights[0] + ndvi * weights[1] + mndwi * weights[2] +
                   road_density * weights[3] + pop_density * weights[4])
    return sensitivity

# 应用算法
slope = calculate_slope(dem)
ndvi = calculate_vegetation_cover(rs)
mndwi = calculate_water_distribution(rs)
road_density = calculate_road_density(lu)
pop_density = calculate_population_density('path_to_population_image.tif')
sensitivity = calculate_ecological_sensitivity(slope, ndvi, mndwi, road_density, pop_density)

# 可视化结果
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(dem, cmap='terrain')
ax[0].set_title('DEM')
ax[1].imshow(sensitivity, cmap='Reds')
ax[1].set_title('Ecological Sensitivity')
plt.show()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值