✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 随着分布式光伏在配电网中的广泛接入,配网在故障恢复过程中面临着传统方法无法有效应对的新挑战。在传统无源配网中,故障电流一般具有单一方向性,故障点的电流特征较为明确。然而,随着高比例分布式光伏的接入,配网中的故障电流呈现出多源特性,导致故障定位和恢复的复杂性显著增加。本文首先基于并网变流器控制与网侧电压之间的耦合机理,分析了含分布式光伏配网在故障发生及恢复过程中的响应特性,建立了考虑控制策略差异的分布式光伏多故障场景等值分析模型。通过该模型揭示了在故障期间光伏并网点电流的变化规律,并探讨了光伏在恢复阶段的动态响应特性。该分析为后续研究故障区段定位和供电恢复控制方法奠定了理论基础,并为配网安全可靠运行提供了重要依据。
(2) 在故障区段定位方面,传统配网的故障区段定位方法依赖于大量的测量数据和全面的故障信息采集。然而,在分布式光伏广泛接入的背景下,全面的测量并不总是可行。因此,本文提出了一种基于有限量测压缩感知的故障区段定位方法,适用于含分布式光伏的配网。首先,基于分布式光伏的压控阻抗等值模型,建立了含分布式光伏配网的故障区段定位模型,明确了低维观测量与高维故障位置信息之间的欠定映射关系。为了有效求解这一欠定问题,本文提出了一种基于贝叶斯压缩感知算法的故障区段定位方法,能够通过有限的测点数据重建故障信息。此外,本文结合光伏并网节点的分区特性和有限等距原则,提出了最少测点的优化布置方案。仿真结果表明,仅使用配网中25%的测点即可实现95%以上的故障区段定位成功率,这为含分布式光伏配网的供电恢复控制提供了可靠的故障位置信息来源。
(3) 针对配网中因故障跳闸而导致的供电中断问题,本文提出了一种基于电压上升限时检测的自适应重合闸方法,以提高供电恢复的速度和可靠性。在故障发生后,保护装置会导致下游分布式光伏并网点脱离电网,而故障清除后这些光伏节点的电压通常会迅速上升。本文利用这一特征,提出了基于电压差积分的故障状态判据,以可靠检测瞬时故障的清除。同时,本文设计了一种重合闸延时自适应整定方案,通过融合保护动作信息和不同电压水平下分布式光伏低压穿越的时间极限,优化重合闸的时序设置。与传统的固定延时重合闸方法相比,本文的方法可将瞬时性故障的恢复时间从传统的3秒以上缩短至数百毫秒内,大幅提高了含分布式光伏配网瞬时性故障后的快速恢复供电能力。
(4) 在配网故障后的供电恢复阶段,合理的供电路径重构对于保障供电可靠性至关重要。本文提出了一种基于双时间断面约束校验的供电路径重构方法,用于处理含分布式光伏接入的配网故障恢复问题。在配网重构的过程中,需要考虑分布式光伏的出力增长和负荷动态变化等因素。为此,本文构造了一个考虑分布式光伏出力增长动态过程的配网重构寻优数学模型,并提出了系统合闸送电初期和后期双时间断面的运行约束校验方法,以确保在重构过程中系统的稳定性和可靠性。此外,本文设计了一种基于预方案初始化和高斯变异改进的二进制粒子群算法,显著提高了重构方案的寻优效率,使得配网重构的决策时间由传统的数分钟缩短至十几秒。同时,通过双时间断面校验,本文的重构方法能够有效避免因光伏低出力而导致的系统恢复失败情况,为含分布式光伏配网在永久性故障隔离后的可靠转供负荷提供了技术保障。
通过以上研究,本文针对含分布式光伏接入的配网故障区段定位与恢复控制提出了创新性的方法。首先,通过深入分析分布式光伏在故障过程中的响应特性,建立了故障特性认知模型;其次,提出了基于有限量测压缩感知的故障区段定位方法,显著减少了测量设备的数量需求,并提高了故障定位的精度和效率;最后,通过提出基于电压上升限时检测的自适应重合闸方法和双时间断面约束校验的供电路径重构方法,本文在供电恢复控制方面取得了重要进展。这些研究成果为未来含分布式光伏接入的智能配网提供了理论依据和技术支撑,并显著提升了配网的供电可靠性和恢复能力。
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# 定义故障电流响应模型
def fault_current_response(voltage, impedance, pv_output):
return (voltage / impedance) + pv_output
# 定义压缩感知的目标函数
def compressed_sensing_objective(x, measurements, transform_matrix):
residual = measurements - np.dot(transform_matrix, x)
return np.linalg.norm(residual, 2) + 0.1 * np.linalg.norm(x, 1)
# 初始化配网参数
voltage = 110 # 假设故障电压为110V
impedance = 5 # 假设系统阻抗为5欧姆
pv_output = np.array([10, 15, 20]) # 分布式光伏的输出功率
# 计算故障电流响应
fault_current = fault_current_response(voltage, impedance, pv_output)
# 定义压缩感知的测量矩阵和测量值
transform_matrix = np.random.rand(10, 3) # 假设有10个测量点,3个未知变量
measurements = np.dot(transform_matrix, pv_output) + np.random.normal(0, 0.5, 10)
# 优化过程,利用压缩感知重建故障信息
x0 = np.zeros(3) # 初始值
result = minimize(compressed_sensing_objective, x0, args=(measurements, transform_matrix),
method='BFGS')
# 输出优化结果
if result.success:
estimated_fault_location = result.x
print(f"估计的故障位置: {estimated_fault_location}")
else:
print("优化未能成功完成")
# 绘制故障电流响应
plt.figure(figsize=(10, 5))
plt.plot(fault_current, label='Fault Current Response')
plt.xlabel('Time Step')
plt.ylabel('Current (A)')
plt.title('Fault Current Response in Distribution Network with PV')
plt.legend()
plt.grid(True)
plt.show()
# 绘制故障定位结果
plt.figure(figsize=(10, 5))
plt.bar(['PV 1', 'PV 2', 'PV 3'], estimated_fault_location)
plt.xlabel('PV Units')
plt.ylabel('Estimated Contribution')
plt.title('Estimated Fault Location Contributions')
plt.grid(True)
plt.show()