✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
1. MTDC系统通用频率响应模型
本文针对现有风电场、交流电网和MTDC系统小信号模型无法直观、有效分析系统频率-有功功率-直流电压动态特性的问题,建立了含风电场的MMC-MTDC系统通用频率响应模型。利用MMC平均值模型交直流侧解耦的特点,独立对电网侧变流器(Grid Side Voltage Sourced Converter, GSVSC)交流侧和发电机进行等值建模。计及背靠背变流器、汇集交流线路和风场侧变流器(Wind Farm Voltage Sourced Converter, WFVSC)损耗的前提下,根据功率转移规律完成了直驱风机和WFVSC中间环节化简。以直流线路为交互端口,结合GSVSC和WFVSC等值模型,采用模块化建模方法组建了含风电场的MMC-MTDC系统的有功类分量小信号模型。
-
MMC平均值模型:
- 交直流侧解耦:MMC平均值模型将交直流侧解耦,独立对GSVSC交流侧和发电机进行等值建模。这种解耦方法能够简化模型,提高计算效率。
- 等值建模:通过等值建模,将复杂的电力系统简化为易于分析的数学模型。等值建模包括对GSVSC交流侧、发电机、背靠背变流器、汇集交流线路和WFVSC的建模。
-
直驱风机和WFVSC中间环节化简:
- 功率转移规律:根据功率转移规律,完成直驱风机和WFVSC中间环节的化简。化简过程中考虑了变流器的损耗,确保模型的准确性。
- 模块化建模:以直流线路为交互端口,结合GSVSC和WFVSC等值模型,采用模块化建模方法组建了含风电场的MMC-MTDC系统的有功类分量小信号模型。模块化建模方法能够灵活地扩展和修改模型,适应不同的应用场景。
-
仿真研究:
- 频率小扰动动态过程:仿真研究表明,通用频率响应模型能准确模拟频率小扰动的动态过程,验证了模型的有效性。
- 频率控制策略研发:通用频率响应模型为VSC-MTDC系统频率控制策略的研发和稳定性研究提供了有力工具。通过模型分析,可以优化控制策略,提高系统的频率稳定性。
2. VSC-MTDC系统协同频率支持策略
本文针对VSC-MTDC系统传统频率控制灵活性不足的问题,定量研究了频率扰动造成的直流电压偏差和不平衡功率分配比例的关键影响因素,提出了一种面向常规交流电源的VSC-MTDC系统协同频率支持策略。提出VSC自适应附加频率控制策略,分别设计了交流频率系数和直流功率系数以表征受扰交流系统和直流网络对频率支援的不同需求,利用过渡因子实现两者结合。通过自适应调节传输至直流网络的不平衡功率,实现频率支援和直流电压稳定的动态平衡。
-
频率扰动分析:
- 直流电压偏差:频率扰动会导致直流电压偏差,影响系统的稳定运行。通过定量研究,分析了频率扰动造成的直流电压偏差和不平衡功率分配比例的关键影响因素。
- 不平衡功率分配:频率扰动引起的不平衡功率分配会影响系统的频率稳定性和直流电压稳定性。通过优化不平衡功率分配,可以提高系统的整体性能。
-
自适应附加频率控制策略:
- 交流频率系数:设计了交流频率系数,表征受扰交流系统对频率支援的需求。交流频率系数根据交流系统的频率变化动态调整,确保频率支援的及时性和有效性。
- 直流功率系数:设计了直流功率系数,表征直流网络对频率支援的需求。直流功率系数根据直流网络的功率需求动态调整,确保直流电压的稳定。
- 过渡因子:利用过渡因子实现交流频率系数和直流功率系数的结合。过渡因子根据系统的运行状态动态调整,实现频率支援和直流电压稳定的动态平衡。
-
自适应有功功率分配方法:
- VSC功率裕度:开发了MTDC系统自适应有功功率分配方法,将VSC功率裕度和交流系统频率引入直流电压下垂系数,动态调整不平衡功率分配比例。VSC功率裕度根据VSC的运行状态动态调整,确保系统的频率稳定性。
- 直流电压下垂系数:直流电压下垂系数根据VSC功率裕度和交流系统频率动态调整,实现不平衡功率的合理分配。通过优化直流电压下垂系数,可以提高系统的频率稳定性和直流电压稳定性。
-
仿真研究:
- 频率支援强度:仿真研究表明,协同频率支持策略能够根据功率扰动的严重程度自动调整VSC频率支援强度,结合系统运行状态实现不平衡功率的合理分配。
- 频率稳定性:协同频率支持策略在提高频率稳定性的同时,还能够有效解决直流电压偏差问题,确保系统的整体性能。
3. 含风电场的VSC-MTDC系统协同频率控制策略
本文针对风电场、交流电网和VSC-MTDC系统频率调节时缺乏协调配合以及风机在频率支援和转速恢复期间缺乏应对风速变化的手段的问题,提出了一种含风电场的VSC-MTDC系统协同频率控制策略。设计了同时考虑风机可释放动能裕度和变流器功率裕度的新型风场调频能力评估方法。提出兼顾系统频率演化状态和风机实时调频能力的直驱风机自适应频率调节方法。研发了风机变风速功率适应方法,根据风速变化情况对风机频率支持和转速恢复期间的功率进行平稳过渡。构建了分区分级的风电场、VSC和交流电网频率调节体系,设计了各环节准入原则和不平衡功率分配机制。
-
风场调频能力评估:
- 风机可释放动能裕度:设计了同时考虑风机可释放动能裕度和变流器功率裕度的新型风场调频能力评估方法。风机可释放动能裕度根据风机的运行状态动态调整,确保频率支援的及时性和有效性。
- 变流器功率裕度:变流器功率裕度根据变流器的运行状态动态调整,确保系统的频率稳定性。
-
直驱风机自适应频率调节:
- 频率演化状态:提出兼顾系统频率演化状态和风机实时调频能力的直驱风机自适应频率调节方法。频率演化状态根据系统的频率变化动态调整,确保频率支援的及时性和有效性。
- 风机实时调频能力:风机实时调频能力根据风机的运行状态动态调整,确保频率支援的及时性和有效性。
-
风机变风速功率适应:
- 风速变化:研发了风机变风速功率适应方法,根据风速变化情况对风机频率支持和转速恢复期间的功率进行平稳过渡。风速变化情况根据风速传感器的实时数据动态调整,确保频率支援的及时性和有效性。
- 功率平稳过渡:通过功率平稳过渡方法,确保风机在频率支援和转速恢复期间的功率平稳过渡,避免功率突变对系统的影响。
-
分区分级频率调节体系:
- 风电场、VSC和交流电网:构建了分区分级的风电场、VSC和交流电网频率调节体系,设计了各环节准入原则和不平衡功率分配机制。分区分级频率调节体系能够灵活地应对不同场景下的频率调节需求,提高系统的整体性能。
- 准入原则:设计了各环节的准入原则,确保频率调节的及时性和有效性。准入原则根据各环节的运行状态动态调整,确保系统的频率稳定性。
- 不平衡功率分配机制:设计了不平衡功率分配机制,确保各环节的不平衡功率合理分配。不平衡功率分配机制根据系统的运行状态动态调整,确保系统的频率稳定性和直流电压稳定性。
-
仿真研究:
- 频率稳定:仿真研究表明,协同频率控制策略能够在风速突变的情况下保障频率稳定,同时有效削弱频率多次下跌。
- 系统性能:协同频率控制策略在提高频率稳定性的同时,还能够有效解决直流电压偏差问题,确保系统的整体性能。
4. VSC-MTDC系统直流电压控制方法
本文针对VSC-MTDC系统辅助频率调节过程中不平衡功率消纳引发的直流电压偏移问题,通过理论分析下垂控制方式下直流电压无差修正的不可行性,提出了一种具备直流电压“准无差”调节能力的VSC-MTDC系统协同优化下垂控制策略。类比同步机阻尼和惯性开发了附加直流电压控制器,自动调节功率参考值以改善动态过程中的直流电压。以扰动后VSC功率变化最小和直流电压距初始值最近为目标,优化下垂控制功率参考值增量,结合功率平滑措施进行稳态直流电压恢复。设计了控制动作时序,协调动态和稳态过程中的控制动作逻辑,以应对功率持续波动和调压过程中功率二次下跌等复杂情景。
-
直流电压“准无差”调节:
- 下垂控制方式:通过理论分析,下垂控制方式下直流电压无差修正的不可行性。提出了一种具备直流电压“准无差”调节能力的VSC-MTDC系统协同优化下垂控制策略。
- 附加直流电压控制器:类比同步机阻尼和惯性开发了附加直流电压控制器,自动调节功率参考值以改善动态过程中的直流电压。附加直流电压控制器根据系统的运行状态动态调整,确保直流电压的稳定。
-
优化下垂控制策略:
- 功率参考值增量:以扰动后VSC功率变化最小和直流电压距初始值最近为目标,优化下垂控制功率参考值增量。通过优化功率参考值增量,可以提高系统的频率稳定性和直流电压稳定性。
- 功率平滑措施:结合功率平滑措施进行稳态直流电压恢复。功率平滑措施能够避免功率突变对系统的影响,确保系统的稳定运行。
-
控制动作时序:
- 动态和稳态过程:设计了控制动作时序,协调动态和稳态过程中的控制动作逻辑,以应对功率持续波动和调压过程中功率二次下跌等复杂情景。控制动作时序根据系统的运行状态动态调整,确保系统的频率稳定性和直流电压稳定性。
- 复杂情景:控制动作时序能够应对功率持续波动和调压过程中功率二次下跌等复杂情景,确保系统的稳定运行。
-
仿真研究:
- 直流电压调节:仿真研究表明,协同优化下垂控制策略能平稳地实现以多个VSC功率变化最小为代价的直流电压全局最优调节,完成直流电压“准无差”修正。
- 系统性能:协同优化下垂控制策略在提高直流电压稳定性的同时,还能够有效解决频率调节过程中引发的直流电压偏移问题,确保系统的整体性能。
import numpy as np
import matplotlib.pyplot as plt
# 定义系统参数
num_vsc = 3 # VSC数量
P_max = 100 # 最大功率
P_min = -100 # 最小功率
K_f = 0.1 # 频率系数
K_p = 0.05 # 功率系数
K_d = 0.01 # 下垂系数
delta_t = 0.1 # 时间步长
# 初始化变量
P_vsc = np.zeros(num_vsc) # VSC功率
P_ref = np.zeros(num_vsc) # VSC参考功率
P_ac = np.zeros(num_vsc) # 交流系统功率
P_dc = np.zeros(num_vsc) # 直流系统功率
f = 50 # 初始频率
V_dc = 1000 # 初始直流电压
# 模拟频率扰动
def simulate_frequency_disturbance(t, P_disturbance):
global f, P_ac, P_vsc, P_ref, V_dc
for i in range(num_vsc):
# 计算交流系统功率
P_ac[i] = P_ac[i] + P_disturbance[i] * delta_t
# 计算VSC参考功率
P_ref[i] = P_ref[i] + K_f * (f - 50) + K_p * (V_dc - 1000)
# 限制参考功率范围
P_ref[i] = max(min(P_ref[i], P_max), P_min)
# 计算VSC功率
P_vsc[i] = P_vsc[i] + (P_ref[i] - P_vsc[i]) * delta_t
# 计算直流系统功率
P_dc[i] = P_dc[i] + (P_vsc[i] - P_ac[i]) * delta_t
# 计算直流电压
V_dc = V_dc + K_d * (P_dc[i] - P_dc[i-1]) * delta_t
# 计算频率
f = f + (P_ac[i] - P_vsc[i]) * delta_t
# 生成频率扰动
P_disturbance = np.random.normal(0, 10, (num_vsc, 100))
# 模拟频率扰动
time_steps = np.arange(0, 10, delta_t)
for t in time_steps:
simulate_frequency_disturbance(t, P_disturbance[:, int(t/delta_t)])
# 绘制结果
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(time_steps, P_vsc.T, label=[f'VSC {i+1}' for i in range(num_vsc)])
plt.xlabel('Time (s)')
plt.ylabel('Power (MW)')
plt.title('VSC Power')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(time_steps, V_dc, label='DC Voltage')
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.title('DC Voltage')
plt.legend()
plt.tight_layout()
plt.show()