风电并网柔性直流输电系统的高频振荡与暂态稳定性分析【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 风电场侧的模块化多电平换流器(MMC)换流站在空充场景下的高频振荡机理和影响因素的分析,是风电经柔性直流并网系统高频振荡研究中的重要环节。首先,本文提出了一种考虑换流变杂散电容的MMC换流站谐波状态空间模型。通过对换流变杂散电容增大时系统特征值轨迹的分析,明确了在高频振荡分析中考虑换流变杂散电容的必要性。接着,对风电场侧MMC换流站在空充状态下的高频振荡模式进行了参与因子分析,发现不同于定功率或定直流电压控制的MMC外环动态对高频振荡的影响较小,采用V/f控制的风电场侧MMC外环交流电压控制对高频振荡的影响较大。为更准确地描述系统的高频特性,本文提出了一种降阶模型,通过忽略高频振荡模式中参与程度较低的环节动态,保留了系统的主要高频特性。利用降阶模型,本文通过阻抗特性分析揭示了高频振荡的机理,发现换流变阻抗受杂散电容影响,在高频段呈现容性,而较大的链路时滞使得风电场侧MMC阻抗在高频段呈现感性负电阻,这使得MMC带换流变空载充电时存在高频振荡的风险。最后,本文分析了系统参数对高频振荡的影响,为MMC换流站参数设计和高频振荡抑制策略提供了理论依据,电磁暂态仿真验证了分析结果的正确性。

(2) 风电经柔直并网系统的暂态同步稳定性是影响风电高效并网的重要因素之一。本文在暂态同步稳定性方面的研究,一方面提出了一种考虑风机网侧变流器锁相环和风电场侧MMC交流电压控制动态的四阶同步稳定模型,利用数值积分法分析了风机锁相环和风电场侧MMC交流电压控制之间的交互影响。研究表明,风机锁相环和风电场侧MMC交流电压控制通过电网阻抗和故障电阻上的电压降相互耦合,增大风电场侧MMC交流电压控制的PI参数和电流限幅值,可以有效提升系统的暂态同步稳定性。同时,故障位置距离风电场越近或故障电阻越小,系统发生暂态同步失稳的风险越高。另一方面,本文通过利用等效摇摆方程和等面积法分析了风电经柔直并网系统暂态同步失稳的机理,总结了提高系统暂态同步稳定性的不同方式。基于此,深入挖掘了风机和风电场侧MMC在提升系统暂态同步稳定性方面的潜力,分析了故障后提升系统暂态同步稳定性的风机和风电场侧MMC最优电流,从而为暂态同步稳定性提升策略的设计提供了理论依据。仿真结果显示,故障后风机和风电场侧MMC的输出电流达到最优时,即使在严重故障条件下,风机和风电场侧MMC仍然能够保持同步运行,验证了所提方法的有效性。

(3) 为了解决含柔直电网的电力系统仿真难题,本文提出了一种机电-电磁混合仿真方法,以实现风电经柔直电网送出的电力系统的动态仿真分析。首先,本文建立了MMC交直流侧等效电路和控制环节动态模型,并通过对直流电网元件进行离散化处理,提出了双极直流电网的伴随电路模型,该模型能够准确反映双极柔直电网的不对称运行工况。为了提升直流故障仿真精度,直流线路模型中同时考虑了电感和电容动态特性。接着,本文提出了一种在现有机电暂态仿真程序中实现含柔直电网电力系统机电-电磁混合仿真的方法,采用多速率仿真的方式,确保了仿真的精度和效率。该方法为风电经柔直电网送出的电力系统仿真提供了一种有效工具。在此基础上,本文利用所提方法在PSASP中实现了含新能源经张北柔直电网送出的华北电网机电-电磁混合仿真,揭示了不同故障和运行方式下交直流电网的暂态交互特性,仿真结果验证了所提方法的正确性和有效性。

本文通过对风电经柔直并网系统高频振荡和暂态同步稳定性问题的深入研究,提出了一系列创新性方法,解决了风电场侧MMC高频振荡的机理问题,并提出了提高暂态同步稳定性的方法。通过机电-电磁混合仿真技术的开发与应用,为未来含新能源的大规模直流电网仿真和稳定性分析提供了可靠的工具和理论支持。


import numpy as np
import matplotlib.pyplot as plt

# 定义系统参数
def system_impedance(freq, stray_capacitance, inductance, resistance):
    omega = 2 * np.pi * freq
    z_cap = -1j / (omega * stray_capacitance)
    z_ind = 1j * omega * inductance
    return resistance + z_ind + z_cap

# 初始化系统参数
stray_capacitance = 1e-6  # 假设杂散电容为1微法
inductance = 1e-3  # 假设电感为1毫亨
resistance = 0.1  # 假设电阻为0.1欧姆

# 定义频率范围
frequencies = np.linspace(10, 10000, 1000)  # 从10Hz到10kHz

# 计算系统阻抗
impedances = [system_impedance(freq, stray_capacitance, inductance, resistance) for freq in frequencies]

# 提取阻抗的幅值和相角
magnitudes = [np.abs(imp) for imp in impedances]
phases = [np.angle(imp) for imp in impedances]

# 绘制阻抗幅频特性
plt.figure(figsize=(10, 5))
plt.plot(frequencies, magnitudes, label='Magnitude of Impedance')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Impedance Magnitude (Ohms)')
plt.title('Impedance Magnitude vs Frequency')
plt.grid(True)
plt.legend()
plt.show()

# 绘制阻抗相频特性
plt.figure(figsize=(10, 5))
plt.plot(frequencies, phases, label='Phase of Impedance')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Phase (Radians)')
plt.title('Impedance Phase vs Frequency')
plt.grid(True)
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值